Effect of noradrenaline on propofol-induced mitochondrial dysfunction in human skeletal muscle cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU21J-06-00078
Agentura Pro Zdravotnický Výzkum České Republiky
PubMed
36346511
PubMed Central
PMC9643307
DOI
10.1186/s40635-022-00474-3
PII: 10.1186/s40635-022-00474-3
Knihovny.cz E-zdroje
- Klíčová slova
- Critical illness, Mitochondrial dysfunction, Noradrenaline, Propofol infusion syndrome, Skeletal muscle,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Mitochondrial dysfunction is a hallmark of both critical illness and propofol infusion syndrome and its severity seems to be proportional to the doses of noradrenaline, which patients are receiving. We comprehensively studied the effects of noradrenaline on cellular bioenergetics and mitochondrial biology in human skeletal muscle cells with and without propofol-induced mitochondrial dysfunction. METHODS: Human skeletal muscle cells were isolated from vastus lateralis biopsies from patients undergoing elective hip replacement surgery (n = 14) or healthy volunteers (n = 4). After long-term (96 h) exposure to propofol (10 µg/mL), noradrenaline (100 µM), or both, energy metabolism was assessed by extracellular flux analysis and substrate oxidation assays using [14C] palmitic and [14C(U)] lactic acid. Mitochondrial membrane potential, morphology and reactive oxygen species production were analysed by confocal laser scanning microscopy. Mitochondrial mass was assessed both spectrophotometrically and by confocal laser scanning microscopy. RESULTS: Propofol moderately reduced mitochondrial mass and induced bioenergetic dysfunction, such as a reduction of maximum electron transfer chain capacity, ATP synthesis and profound inhibition of exogenous fatty acid oxidation. Noradrenaline exposure increased mitochondrial network size and turnover in both propofol treated and untreated cells as apparent from increased co-localization with lysosomes. After adjustment to mitochondrial mass, noradrenaline did not affect mitochondrial functional parameters in naïve cells, but it significantly reduced the degree of mitochondrial dysfunction induced by propofol co-exposure. The fatty acid oxidation capacity was restored almost completely by noradrenaline co-exposure, most likely due to restoration of the capacity to transfer long-chain fatty acid to mitochondria. Both propofol and noradrenaline reduced mitochondrial membrane potential and increased reactive oxygen species production, but their effects were not additive. CONCLUSIONS: Noradrenaline prevents rather than aggravates propofol-induced impairment of mitochondrial functions in human skeletal muscle cells. Its effects on bioenergetic dysfunctions of other origins, such as sepsis, remain to be demonstrated.
Zobrazit více v PubMed
Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, Davies NA, Cooper CE, Singer M. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 2002;360(9328):219–223. doi: 10.1016/S0140-6736(02)09459-X. PubMed DOI
Supinski GS, Schroder EA, Callahan LA. Mitochondria and critical illness. Chest. 2020;157(2):310–322. doi: 10.1016/j.chest.2019.08.2182. PubMed DOI PMC
Branca D, Vincenti E, Scutari G. Influence of the anesthetic 2,6-diisopropylphenol (propofol) on isolated rat heart mitochondria. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1995;110(1):41–45. doi: 10.1016/0742-8413(94)00078-o. PubMed DOI
Branca D, Roberti MS, Lorenzin P, Vincenti E, Scutari G. Influence of the anesthetic 2,6-diisopropylphenol on the oxidative phosphorylation of isolated rat liver mitochondria. Biochem Pharmacol. 1991;42(1):87–90. doi: 10.1016/0006-2952(91)90684-w. PubMed DOI
Branca D, Roberti MS, Vincenti E, Scutari G. Uncoupling effect of the general anesthetic 2,6-diisopropylphenol in isolated rat liver mitochondria. Arch Biochem Biophys. 1991;290(2):517–521. doi: 10.1016/0003-9861(91)90575-4. PubMed DOI
Rigoulet M, Devin A, Avéret N, Vandais B, Guérin B. Mechanisms of inhibition and uncoupling of respiration in isolated rat liver mitochondria by the general anesthetic 2,6-diisopropylphenol. Eur J Biochem. 1996;241(1):280–285. doi: 10.1111/j.1432-1033.1996.0280t.x. PubMed DOI
Schenkman KA, Yan S. Propofol impairment of mitochondrial respiration in isolated perfused guinea pig hearts determined by reflectance spectroscopy. Crit Care Med. 2000;28(1):172–177. doi: 10.1097/00003246-200001000-00028. PubMed DOI
Krajčová A, Løvsletten NG, Waldauf P, Frič V, Elkalaf M, Urban T, Anděl M, Trnka J, Thoresen GH, Duška F. Effects of propofol on cellular bioenergetics in human skeletal muscle cells. Crit Care Med. 2017 doi: 10.1097/CCM.0000000000002875. PubMed DOI
Kam PCA, Cardone D. Propofol infusion syndrome. Anaesthesia. 2007;62(7):690–701. doi: 10.1111/j.1365-2044.2007.05055.x. PubMed DOI
Ahlen K, Buckley CJ, Goodale DB, Pulsford AH. The „propofol infusion syndrome": the facts, their interpretation and implications for patient care. Eur J Anaesthesiol. 2006;23(12):990–998. doi: 10.1017/S0265021506001281. PubMed DOI
Krajčová A, Waldauf P, Anděl M, Duška F. Propofol infusion syndrome: a structured review of experimental studies and 153 published case reports. Crit Care. 2015;19(1):398. doi: 10.1186/s13054-015-1112-5. PubMed DOI PMC
Vasile B, Rasulo F, Candiani A, Latronico N. The pathophysiology of propofol infusion syndrome: a simple name for a complex syndrome. Intensive Care Med. 2003;29(9):1417–1425. doi: 10.1007/s00134-003-1905-x. PubMed DOI
Savard M, Dupré N, Turgeon AF, Desbiens R, Langevin S, Brunet D. Propofol-related infusion syndrome heralding a mitochondrial disease: case report. Neurology. 2013;81(8):770–771. doi: 10.1212/WNL.0b013e3182a1aa78. PubMed DOI PMC
Rhodes A, Evans L, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med. 2017;45(3):486–552. doi: 10.1097/CCM.0000000000002255. PubMed DOI
De Backer D, Biston P, Devriendt J, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362(9):779–789. doi: 10.1056/NEJMoa0907118. PubMed DOI
Møller M, Claudius C, Junttila E, et al. Scandinavian SSAI clinical practice guideline on choice of first-line vasopressor for patients with acute circulatory failure. Acta Anaesthesiol Scand. 2016;60(10):1347–1366. doi: 10.1111/aas.12780. PubMed DOI PMC
Krajcova A, Ziak J, Jiroutkova K, Patkova J, Elkalaf M, Dzupa V, Trnka J, Duska F. Normalizing glutamine concentration causes mitochondrial uncoupling in an in vitro model of human skeletal muscle. JPEN J Parenter Enteral Nutr. 2015;39(2):180–189. doi: 10.1177/0148607113513801. PubMed DOI
Casati A, Fanelli G, Casaletti E, Colnaghi E, Cedrati V, Torri G. Clinical assessment of target-controlled infusion of propofol during monitored anesthesia care. Can J Anaesth. 1999;46(3):235–239. doi: 10.1007/BF03012602. PubMed DOI
Herregods L, Rolly G, Versichelen L, Rosseel M. Propofol combined with nitrous oxide-oxygen for induction and maintenance of anaesthesia. Anaesthesia. 1987;42(4):360–365. doi: 10.1111/j.1365-2044.1987.tb03975.x. PubMed DOI
Ferrick DA, Neilson A, Beeson C. Advances in measuring cellular bioenergetics using extracellular flux. Drug Discov Today. 2008;13(5–6):268–274. doi: 10.1016/j.drudis.2007.12.008. PubMed DOI
Gerencser AA, Neilson A, Choi SW, et al. Quantitative microplate-based respirometry with correction for oxygen diffusion. Anal Chem. 2009;81(16):6868–6878. doi: 10.1021/ac900881z. PubMed DOI PMC
Brand MD, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochem J. 2011;435(2):297–312. doi: 10.1042/BJ20110162. PubMed DOI PMC
Srere PA. Citrate Synthase. Methods Enzymol. 1969;13:3–11. doi: 10.1016/0076-6879(69)13005-0. DOI
Wensaas AJ, Rustan AC, Lövstedt K, et al. Cell-based multiwell assays for the detection of substrate accumulation and oxidation. J Lipid Res. 2007;48(4):961–967. doi: 10.1194/jlr.D600047-JLR200. PubMed DOI
Poot M, Zhang YZ, Krämer JA, et al. Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. J Histochem Cytochem. 1996;44(12):1363–1372. doi: 10.1177/44.12.8985128. PubMed DOI
Doherty E, Perl A. Measurement of mitochondrial mass by flow cytometry during oxidative stress. React Oxyg Species. 2017;4(10):275–283. doi: 10.20455/ros.2017.839. PubMed DOI PMC
Corona JC, de Souza SC, Duchen MR. PPARγ activation rescues mitochondrial function from inhibition of complex I and loss of PINK1. Exp Neurol. 2014;253:16–27. doi: 10.1016/j.expneurol.2013.12.012. PubMed DOI
Rieger B, Krajčová A, Duwe P, Busch KB. ALCAT1 overexpression affects supercomplex formation and increases ROS in respiring mitochondria. Oxid Med Cell Longev. 2019 doi: 10.1155/2019/9186469. PubMed DOI PMC
Hao L, Nishimura T, Wo H, Fernandez-Patron C. Vascular responses to α1-adrenergic receptors in small rat mesenteric arteries depend on mitochondrial reactive oxygen species. Arterioscler Thromb Vasc Biol. 2006;26(4):819–825. doi: 10.1161/01.ATV.0000204344.90301.7c. PubMed DOI
Bailey SR, Mitra S, Flavahan S, Flavahan NA. Reactive oxygen species from smooth muscle mitochondria initiate cold-induced constriction of cutaneous arteries. Am J Physiol Hear Circ Physiol. 2005;289(1 58-1):243–250. doi: 10.1152/ajpheart.01305.2004. PubMed DOI
Ding WX, Yin XM. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem. 2012;393(7):547–564. doi: 10.1515/hsz-2012-0119. PubMed DOI PMC
Skagen C, Nyman TA, Peng XR, et al. Chronic treatment with terbutaline increases glucose and oleic acid oxidation and protein synthesis in cultured human myotubes. Curr Res Pharmacol Drug Discov. 2021;2(June):100039. doi: 10.1016/j.crphar.2021.100039. PubMed DOI PMC
Scholpa NE, Simmons EC, Tilley DG, Schnellmann RG. Β2-adrenergic receptor-mediated mitochondrial biogenesis improves skeletal muscle recovery following spinal cord injury. Exp Neurol. 2019 doi: 10.1016/j.expneurol.2019.113064. PubMed DOI PMC
Kohlie R, Perwitz N, Resch J, et al. Dopamine directly increases mitochondrial mass and thermogenesis in brown adipocytes. Roč. 2017 doi: 10.1530/JME-16-0159. PubMed DOI
Napolitano G, Barone D, Di Meo S, Venditti P. Adrenaline induces mitochondrial biogenesis in rat liver. J Bioenerg Biomembr. 2018;50(1):11–19. doi: 10.1007/s10863-017-9736-6. PubMed DOI
Yim WWY, Mizushima N. Lysosome biology in autophagy. Cell Discov. 2020 doi: 10.1038/s41421-020-0141-7. PubMed DOI PMC
Sawan SA, Mazzulla M, Moore DR, Hodson N. More than just a garbage can: emerging roles of the lysosome as an anabolic organelle in skeletal muscle. Am J Physiol Cell Physiol. 2020 doi: 10.1152/ajpcell.00241.2020. PubMed DOI PMC
Todkar K, Ilamathi HS, Germain M. Mitochondria and lysosomes: discovering bonds. Front Cell Dev Biol. 2017;5(DEC):1–7. doi: 10.3389/fcell.2017.00106. PubMed DOI PMC
Wong YC, Kim S, Peng W, Krainc D. Regulation and function of mitochondria-lysosome membrane contact sites in cellular homeostasis. Trends Cell Biol. 2019;29(6):500–513. doi: 10.1016/j.tcb.2019.02.004. PubMed DOI PMC
Zhou A, Kondo M, Matsuura Y, et al. Mechanism of norepinephrine-induced lipolysis in isolated adipocytes: evidence for its lipolytic action inside the cells. Pathophysiology. 1995;2(1):29–34. doi: 10.1016/0928-4680(95)00004-K. DOI
Li Y, Li Z, Ngandiri DA, Llerins Perez M, Wolf A, Wang Y. The molecular brakes of adipose tissue lipolysis. Front Physiol. 2022;13(February):1–19. doi: 10.3389/fphys.2022.826314. PubMed DOI PMC
Quisth V, Enoksson S, Blaak E, Hagström-Toft E, Arner P, Bolinder J. Major differences in noradrenaline action on lipolysis and blood flow rates in skeletal muscle and adipose tissue in vivo. Diabetologia. 2005;48(5):946–953. doi: 10.1007/s00125-005-1708-4. PubMed DOI
Navegantes LCC, Sjöstrand M, Gudbjörnsdottir S, Strindberg L, Elam M, Lönnroth P. Regulation and counterregulation of lipolysis in vivo: different roles of sympathetic activation and insulin. J Clin Endocrinol Metab. 2003;88(11):5515–5520. doi: 10.1210/jc.2003-030445. PubMed DOI
Hagström-Toft E, Enoksson S, Moberg E, Bolinder J, Arner P. β-Adrenergic regulation of lipolysis and blood flow in human skeletal muscle in vivo. Am J Physiol Endocrinol Metab. 1998;275(6 38-6):909–916. doi: 10.1152/ajpendo.1998.275.6.e909. PubMed DOI
Jin YJ, Li SZ, Zhao ZS, et al. Carnitine palmitoyltransferase-1 (CPT-1) activity stimulation by cerulenin via sympathetic nervous system activation overrides cerulenin’s peripheral effect. Endocrinology. 2004;145(7):3197–3204. doi: 10.1210/en.2004-0039. PubMed DOI
Wolf AR, Potter F. Propofol infusion in children: when does an anesthetic tool become an intensive care liability? Paediatr Anaesth. 2004;14(6):435–438. doi: 10.1111/j.1460-9592.2004.01332.x. PubMed DOI
Timpe EM, Eichner SF, Phelps SJ. Propofol-related infusion syndrome in critically Ill pediatric patients: coincidence, association, or causation? J Pediatr Pharmacol Ther. 2006;11(1):17–42. doi: 10.5863/1551-6776-11.1.17. PubMed DOI PMC
Mirrakhimov A, Voore P, Halytskyy O, Khan M, Ali A. Propofol infusion syndrome in adults: a clinical update. Crit Care Res Pr. 2015;2015(260385):1–10. doi: 10.1155/2015/260385. PubMed DOI PMC
Johnston AJ, Steiner LA, O’Connell M, Chatfield DA, Gupta AK, Menon DK. Pharmacokinetics and pharmacodynamics of dopamine and norepinephrine in critically ill head-injured patients. Intensive Care Med. 2004;30(1):45–50. doi: 10.1007/s00134-003-2032-4. PubMed DOI
Beloeil H, Mazoit JX, Benhamou D, Duranteau J. Norepinephrine kinetics and dynamics in septic shock and trauma patients. Br J Anaesth. 2005;95(6):782–788. doi: 10.1093/bja/aei259. PubMed DOI
Goldstein DS, Zimlichman R, Stull R, Keiser HR, Kopin IJ. Estimation of intrasynaptic norepinephrine concentrations in humans. Hypertension. 1986;8(6):471–475. doi: 10.1161/01.HYP.8.6.471. PubMed DOI
Hoeldtke R, Cilmi K, Reichard G, Jr, Boden G, Owen O. Assessment of norepinephrine secretion and production. J Lab Clin Med. 1983;101(5):772–782. PubMed
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI