The Expression Profile of MicroRNAs in Small and Large Abdominal Aortic Aneurysms
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31885906
PubMed Central
PMC6914980
DOI
10.1155/2019/8645840
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Abdominal aortic aneurysms (AAA) are relatively frequent in elderly population, and their ruptures are related with high mortality rate. There are no actually used laboratory markers predicting the AAA development, course, and rupture. MicroRNAs are small noncoding molecules involved in posttranscriptional gene expression regulation, influencing processes on cell and tissue levels, and are actually in focus due to their potential to become diagnostic or prognostic markers in various diseases. METHODS: Tissue samples of AAA patients and healthy controls were collected, from which miRNA was isolated. Microarray including the complete panel of 2549 miRNAs was used to find expression miRNA profiles that were analysed in three subgroups: small (N = 10) and large (N = 6) aneurysms and healthy controls (N = 5). Fold changes between expression in aneurysms and normal tissue were calculated including corresponding p values, adjusted to multiple comparisons. RESULTS: Six miRNAs were found to be significantly dysregulated in small aneurysms (miR-7158-5p, miR-658, miR-517-5p, miR-122-5p, miR-326, and miR-3180) and 162 in large aneurysms, in comparison with the healthy control. Ten miRNAs in large aneurysms with more than two-fold significant change in expression were identified: miR-23a-3p, miR-24-3p, miR-27a-3p, miR-27b-3p, miR-30d-5p, miR-193a-3p, miR-203a-3p, miR-365a-3p, miR-4291, and miR-3663-3p and all, but the last one was downregulated in aneurysmal walls. CONCLUSION: We confirmed some previously identified miRNAs (miR-23/27/24 family, miR-193a, and miR-30) as associated with AAA pathogenesis. We have found other, yet in AAA unidentified miRNAs (miR-203a, miR-3663, miR-365a, and miR-4291) for further analyses, to investigate more closely their possible role in pathogenesis of aneurysms. If their role in AAA development is proved significant in future, they can become potential markers or treatment targets.
Biomedical Centre Faculty of Medicine in Pilsen Charles University Pilsen Czech Republic
Department of Biology Faculty of Medicine in Pilsen Charles University Pilsen Czech Republic
Zobrazit více v PubMed
Svensjö S., Björck M., Wanhainen A. Update on screening for abdominal aortic aneurysm: a topical review. European Journal of Vascular and Endovascular Surgery. 2014;48(6):659–667. doi: 10.1016/j.ejvs.2014.08.029. PubMed DOI
Anjum A., Powell J. T. Is the incidence of abdominal aortic aneurysm declining in the 21st century? Mortality and hospital admissions for England & Wales and Scotland. European Journal of Vascular and Endovascular Surgery. 2012;43(2):161–166. doi: 10.1016/j.ejvs.2011.11.014. PubMed DOI
Mani K., Lees T., Beiles B., et al. Treatment of abdominal aortic aneurysm in nine countries 2005–2009: a vascunet report. European Journal of Vascular and Endovascular Surgery. 2011;42(5):598–607. doi: 10.1016/j.ejvs.2011.06.043. PubMed DOI
Fazi F., Nervi C. MicroRNA: basic mechanisms and transcriptional regulatory networks for cell fate determination. Cardiovascular Research. 2008;79(4):553–561. doi: 10.1093/cvr/cvn151. PubMed DOI
Gao P., Si J., Yang B., Yu J. Upregulation of microRNA-15a contributes to pathogenesis of abdominal aortic aneurysm (AAA) by modulating the expression of cyclin-dependent kinase inhibitor 2B (CDKN2B) Medical Science Monitor. 2017;23:881–888. doi: 10.12659/msm.898233. PubMed DOI PMC
Zhang W., Shang T., Huang C., et al. Plasma microRNAs serve as potential biomarkers for abdominal aortic aneurysm. Clinical Biochemistry. 2015;48(15):988–992. doi: 10.1016/j.clinbiochem.2015.04.016. PubMed DOI
Jones G. T., Tromp G., Kuivaniemi H., et al. Meta-analysis of genome-wide association studies for abdominal aortic aneurysm identifies four new disease-specific risk loci. Circulation Research. 2017;120(2):341–353. doi: 10.1161/circresaha.116.308765. PubMed DOI PMC
Kessler T., Vilne B., Schunkert H. The impact of genome-wide association studies on the pathophysiology and therapy of cardiovascular disease. EMBO Molecular Medicine. 2016;8(7):688–701. doi: 10.15252/emmm.201506174. PubMed DOI PMC
Almeida M. I., Reis R. M., Clain G. A. MicroRNA history: discovery, recent applications, and next frontiers. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2011;717(1-2):1–8. doi: 10.1016/j.mrfmmm.2011.03.009. PubMed DOI
Creemers E. E., Tijsen A. J., Pinto Y. M. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circulation Research. 2012;110(3):483–495. doi: 10.1161/circresaha.111.247452. PubMed DOI
Bang C., Fiedler J., Thum T. Cardiovascular importance of the microRNA-23/27/24 family. Microcirculation. 2012;19(3):208–214. doi: 10.1111/j.1549-8719.2011.00153.x. PubMed DOI
Liu L., Cheng Z., Yang J. miR-23 regulates cell proliferation and apoptosis of vascular smooth muscle cells in coronary heart disease. Pathology—Research and Practice. 2018;214(11):1873–1878. doi: 10.1016/j.prp.2018.09.004. PubMed DOI
Chen W.-J., Yin K., Zhao G.-J., Fu Y.-C., Tang C.-K. The magic and mystery of microRNA-27 in atherosclerosis. Atherosclerosis. 2012;222(2):314–323. doi: 10.1016/j.atherosclerosis.2012.01.020. PubMed DOI
Welten S. M. J., Goossens E. A. C., Quax P. H. A., Nossent A. Y. The multifactorial nature of microRNAs in vascular remodelling. Cardiovascular Research. 2016;110(1):6–22. doi: 10.1093/cvr/cvw039. PubMed DOI
Maegdefessel L., Spin J. M., Raaz U., et al. miR-24 limits aortic vascular inflammation and murine abdominal aneurysm development. Nature Communications. 2014;5(1):p. 5214. doi: 10.1038/ncomms6214. PubMed DOI PMC
Jiang Y., Zhang M., He H., et al. MicroRNA/mRNA profiling and regulatory network of intracranial aneurysm. BMC Medical Genomics. 2013;6(1):p. 36. doi: 10.1186/1755-8794-6-36. PubMed DOI PMC
Mao L., Liu S., Hu L., et al. miR-30 family: a promising regulator in development and disease. BioMed Research International. 2018;2018:8. doi: 10.1155/2018/9623412.9623412 PubMed DOI PMC
Spear R., Boytard L., Blervaque R., et al. Adventitial tertiary lymphoid organs as potential source of MicroRNA biomarkers for abdominal aortic aneurysm. International Journal of Molecular Sciences. 2015;16(12):11276–11293. doi: 10.3390/ijms160511276. PubMed DOI PMC
Chen M., Ma G., Yue Y., et al. Downregulation of the miR-30 family microRNAs contributes to endoplasmic reticulum stress in cardiac muscle and vascular smooth muscle cells. International Journal of Cardiology. 2014;173(1):65–73. doi: 10.1016/j.ijcard.2014.02.007. PubMed DOI
Jia K., Shi P., Han X., Chen T., Tang H., Wang J. Diagnostic value of miR-30d-5p and miR-125b-5p in acute myocardial infarction. Molecular Medicine Reports. 2016;14(1):184–194. doi: 10.3892/mmr.2016.5246. PubMed DOI PMC
Moushi A., Michailidou K., Soteriou M., Cariolou M., Bashiardes E. MicroRNAs as possible biomarkers for screening of aortic aneurysms: a systematic review and validation study. Biomarkers. 2018;23(3):253–264. doi: 10.1080/1354750X.2018.1423704. PubMed DOI
Liao M., Zou S., Weng J., et al. A microRNA profile comparison between thoracic aortic dissection and normal thoracic aorta indicates the potential role of microRNAs in contributing to thoracic aortic dissection pathogenesis. Journal of Vascular Surgery. 2011;53(5):1341–1349. doi: 10.1016/j.jvs.2010.11.113. PubMed DOI
Patuzzo C., Pasquali A., Trabetti E., et al. A preliminary microRNA analysis of non syndromic thoracic aortic aneurysms. Balkan Journal of Medical Genetics. 2012;15(Supplement):51–55. doi: 10.2478/v10034-012-0019-6. PubMed DOI PMC
Khoo C. P., Roubelakis M. G., Schrader J. B., et al. miR-193a-3p interaction with HMGB1 downregulates human endothelial cell proliferation and migration. Scientific Reports. 2017;7(1):p. 44137. doi: 10.1038/srep44137. PubMed DOI PMC
Madrigal-Matute J., Rotllan N., Aranda J. F., Fernández-Hernando C. MicroRNAs and atherosclerosis. Current Atherosclerosis Reports. 2013;15(5):p. 322. doi: 10.1007/s11883-013-0322-z. PubMed DOI PMC
Sonkoly E., Ståhle M., Pivarcsi A. MicroRNAs and immunity: novel players in the regulation of normal immune function and inflammation. Seminars in Cancer Biology. 2008;18(2):131–140. doi: 10.1016/j.semcancer.2008.01.005. PubMed DOI
Sonkoly E., Ståhle M., Pivarcsi A. MicroRNAs: novel regulators in skin inflammation. Clinical and Experimental Dermatology. 2008;33(3):312–315. doi: 10.1111/j.1365-2230.2008.02804.x. PubMed DOI
Romain M., Taleb S., Dalloz M., et al. Overexpression of SOCS3 in T lymphocytes leads to impaired interleukin-17 production and severe aortic aneurysm formation in mice-brief report. Arteriosclerosis, Thrombosis, and Vascular Biology. 2013;33(3):581–584. doi: 10.1161/atvbaha.112.300516. PubMed DOI
Ohno-Urabe S., Aoki H., Nishihara M., et al. Role of macrophage SOCS3 in the pathogenesis of aortic dissection. Journal of the American Heart Association. 2018;7(2) doi: 10.1161/jaha.117.007389. PubMed DOI PMC
Shi J., Liu H., Wang H., Kong X. MicroRNA expression signature in degenerative aortic stenosis. BioMed Research International. 2016;2016:6. doi: 10.1155/2016/4682172.4682172 PubMed DOI PMC