Continuous Production of Pure Titanium with Ultrafine to Nanocrystalline Microstructure
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
31940761
PubMed Central
PMC7014269
DOI
10.3390/ma13020336
PII: ma13020336
Knihovny.cz E-zdroje
- Klíčová slova
- continuous production, pure titanium, severe plastic deformation,
- Publikační typ
- časopisecké články MeSH
This work deals with the application of the Conform SPD (Severe Plastic Deformation) continuous extrusion process for ultrafine to nanostructured pure titanium production. The process has been derived from the Equal Channel Angular Pressing (ECAP) technique but, unlike ECAP, it offers continuous production of high-strength wire. This study describes the Conform SPD process combined with subsequent cold working (rotary swaging technique), its potential for commercial application, and the properties of high-strength wires of pure titanium. High-strength wire of titanium Grade 4 is the product. Titanium Grade 4 reaches ultimate strengths up to 1320 MPa. This value is more than twice the ultimate strength of the unprocessed material. The typical grain size upon processing ranges from 200 to 500 nm. Process development supported by FEM analysis together with detailed microstructure characterization accompanied by mechanical properties investigation is presented.
Zobrazit více v PubMed
Sabirov I., Enikeev N.A., Murashkin M.Y., Valiev R.Z. Bulk Nanostructured Materials with Multifunctional Properties. Springer; Berlin, Germany: 2015.
Mishnaevsky L., Levashov E., Valiev R.Z., Segurado J., Sabirov I., Enikeev N., Prokoshkin S., Solov’Yov A.V., Korotitskiy A., Gutmanas E., et al. Nanostructured titanium-based materials for medical implants: Modeling and development. Mater. Sci. Eng. R Rep. 2014;81:1–19. doi: 10.1016/j.mser.2014.04.002. DOI
Mishra A., Kad B.K., Gregori F., Meyers M.A. Microstructural evolution in copper subjected to severe plastic deformation: Experiments and analysis. Acta Mater. 2007;55:13–28. doi: 10.1016/j.actamat.2006.07.008. DOI
Gomes C.C., Moreira L.M., Santos V.J.S.V., Ramos A.S., Lyon J.P., Soares C.P., Santos F.V. Assessment of the genetic risks of a metallic alloy used in medical implants. Genet. Mol. Biol. 2011;34:116–121. doi: 10.1590/S1415-47572010005000118. PubMed DOI PMC
Okazaki Y., Gotoh E., Manabe T., Kobayashi K. Comparison of metal concentrations in rat tibia tissues with various metallic implants. Biomaterials. 2004;25:5913–5920. doi: 10.1016/j.biomaterials.2004.01.064. PubMed DOI
Lin C.W., Ju C.P., Chern Lin J.H. A comparison of the fatigue behavior of cast Ti-7.5Mo with c.p. titanium, Ti-6Al-4V and Ti-13Nb-13Zr alloys. Biomaterials. 2005;26:2899–2907. doi: 10.1016/j.biomaterials.2004.09.007. PubMed DOI
Zreiqat H., Valenzuela S.M., Ben Nissan B., Roest R., Knabe C., Radlanski R.J., Renz H., Evans P.J. The effect of surface chemistry modification of titanium alloy on signalling pathways in human osteoblasts. Biomaterials. 2005;26:7579–7586. doi: 10.1016/j.biomaterials.2005.05.024. PubMed DOI
Raab G.I., Valiev R., Gunderov D., Lowe T.C., Misra A., Zhu Y.T. Long-Length Ultrafine-Grained Titanium Rods Produced by ECAP-Conform. Mater. Sci. Forum. 2009;584–586:80–85. doi: 10.4028/www.scientific.net/MSF.584-586.80. DOI
Zemko M., Kubina T., Dlouhý J., Kover M., Hodek J. Technological aspects of preparation of nanostructured titanium wire using a CONFORM machine. IOP Conf. Ser. Mater. Sci. Eng. 2014;63:012049. doi: 10.1088/1757-899X/63/1/012049. DOI
Palán J., Maleček L., Hodek J., Zemko M., Dzugan J. Possibilities of biocompatible material production using conform SPD technology. Arch. Mater. Sci. Eng. 2017;88:5–11. doi: 10.5604/01.3001.0010.7746. DOI
Kubina T., Dlouhý J., Kövér M., Hodek J. Study of Thermal Stability of Ultra Fine-Grained Commercially Pure Titanium Wire Prepared in Conform Equipment. Mater. Sci. Forum. 2014;782:415–420. doi: 10.4028/www.scientific.net/MSF.782.415. DOI
Li B., Li C.H., Yao X.J., Song B.Y. Effects of Continuous Extrusion on Microstructure Evolution and Property Characteristics of Brass Alloy. Adv. Mater. Res. 2011;189–193:2921–2924. doi: 10.4028/www.scientific.net/AMR.189-193.2921. DOI
He Y.L., Gao F., Song B.Y., Fu R., Wu G.M., Li J., Jiang L. Grain Refinement of Magnesium Alloys by CONFORM: A Continuous Severe Plastic Deformation Route? Mater. Sci. Forum. 2012;706–709:1781–1786. doi: 10.4028/www.scientific.net/MSF.706-709.1781. DOI
Etherington C. Conform—A New Concept for the Continuous Extrusion Forming of Metals. J. Manuf. Sci. Eng. Trans. ASME. 1973;96:893–900. doi: 10.1115/1.3438458. DOI
Palán J., Procházka R., Džugan J., Nacházel J., Duchek M., Gergely N., Minárik P., Horvát K. Comprehensive Evaluation of the Properties of Ultrafine to Nanocrystalline Grade 2 Titanium Wires. Materials. 2018;11:2522. doi: 10.3390/ma11122522. PubMed DOI PMC
Valiev R.Z., Langdon T.G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 2006;51:881–981. doi: 10.1016/j.pmatsci.2006.02.003. DOI
Xu C., Schroeder S., Berbon P.B., Langdon T.G. Principles of ECAP-Conform as a continuous process for achieving grain refinement: Application to an aluminum alloy. Acta Mater. 2010;58:1379–1386. doi: 10.1016/j.actamat.2009.10.044. DOI
Zhao X., Yang X., Liu X., Wang X., Langdon T.G. The processing of pure titanium through multiple passes of ECAP at room temperature. Mater. Sci. Eng. A. 2010;527:6335–6339. doi: 10.1016/j.msea.2010.06.049. DOI
Krystian M., Huber D., Horky J. Equal channel angular pressing (ECAP) and forging of commercially pure titanium (CP-Ti) AIP Conf. Proc. 2017;1896
Semenova I.P., Valiev R.Z., Yakushina E.B., Salimgareeva G.H., Lowe T.C. Strength and fatigue properties enhancement in ultrafine-grained Ti produced by severe plastic deformation. J. Mater. Sci. 2008;43:7354–7359. doi: 10.1007/s10853-008-2984-4. PubMed DOI PMC
Semenova I.P., Polyakov A.V., Raab G.I., Lowe T.C., Valiev R.Z. Enhanced fatigue properties of ultrafine-grained Ti rods processed by ECAP-Conform. J. Mater. Sci. 2012;47:7777–7781. doi: 10.1007/s10853-012-6675-9. DOI
Wu H., Jiang J., Liu H., Sun J., Gu Y., Tang R., Zhao X., Ma A. Fabrication of an Ultra-Fine Grained Pure Titanium with High Strength and Good Ductility via ECAP plus Cold Rolling. Metals (Basel) 2017;7:563. doi: 10.3390/met7120563. DOI
Gunderov D.V., Polyakov A.V., Semenova I.P., Raab G.I., Churakova A.A., Gimaltdinova E.I., Sabirov I., Segurado J., Sitdikov V.D., Alexandrov I.V., et al. Evolution of microstructure, macrotexture and mechanical properties of commercially pure Ti during ECAP-conform processing and drawing. Mater. Sci. Eng. A. 2013;562:128–136. doi: 10.1016/j.msea.2012.11.007. DOI
Hodek J., Zemko M. FEM model of continuous extrusion of titanium in deform software. Tanger Ltd. Plzeň Czech Repub. 2013:347–351.
Hatherly F.J.H., Hatherly M. Recrystallization and Related Annealing Phenomena. 2nd ed. Pergamon; Bergama, Turkey: 2004.
Nourbakhsh S., O’Brien T.D. Texture formation and transition in Cold-rolled titanium. Mater. Sci. Eng. 1988;100:109–114. doi: 10.1016/0025-5416(88)90245-5. DOI
Thomas B.M., Derguti F., Jackson M. Continuous extrusion of a commercially pure titanium powder via the Conform process. Mater. Sci. Technol. (UK) 2017;33:899–903. doi: 10.1080/02670836.2016.1245256. DOI
Thomas B.M. Continuous Extrusion of Commercially Pure Titanium Powder. University of Sheffield; Sheffield, UK: 2015.
Valiev R.Z., Alexandrov I.V. Nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 2000;45:103–189. doi: 10.1016/S0079-6425(99)00007-9. DOI
Jansson B., Rolfson M., Thuvander A., Melander A., Wullimann C. Calculation of microstructure and hardness of hot rolled steel bars. Mater. Sci. Technol. 2014;7:118–128. doi: 10.1179/mst.1991.7.2.118. DOI
Eivani A.R., Zhou J., Duszczyk J. Mechanism of the formation of peripheral coarse grain structure in hot extrusion of Al-4.5Zn-1Mg. Philos. Mag. 2016;96:1188–1196. doi: 10.1080/14786435.2016.1157637. DOI
Kubina T., Dlouhý J., Köver M., Dománková M., Hodek J. Preparation and thermal stability of ultra-fine and nano-grained commercially pure titanium wires using conform equipment. Mater. Tehnol. 2015;49:213–217. doi: 10.17222/mit.2013.226. DOI
Palán J., Procházka R., Zemko M. The microstructure and mechanical properties evaluation of UFG Titanium Grade 4 in relation to the technological aspects of the CONFORM SPD process. Procedia Eng. 2017;207:1439–1444. doi: 10.1016/j.proeng.2017.10.910. DOI