Evaluation of the Mechanical, Physical, and Anti-Fungal Properties of Flax Laboratory Papersheets with the Nanoparticles Treatment
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS19/143/OHK1/3T/11
Czech Technical University in Prague
PubMed
31940977
PubMed Central
PMC7014466
DOI
10.3390/ma13020363
PII: ma13020363
Knihovny.cz E-zdroje
- Klíčová slova
- flax papersheets, fungal inhibition, mechanical properties, nanoparticles, optical properties,
- Publikační typ
- časopisecké články MeSH
In the present study, novel mixed additives of Chitosan or Paraloid B-72 combined with nanoparticles (NPs) of Ag, ZnO, or cellulose (NCL) were examined for their effects on the mechanical, optical, and fungal inhibition properties of the papersheets produced. The highest tensile, tear, and burst indices of the papersheets were observed for flax pulp treated with additives of Paraloid B-72 + ZnO NP (1%), Chitosan + ZnO NP (3%), and Chitosan + NCL (3%) at levels of 59.93 N·m/g, 18.45 mN·m2/g, and 6.47 kPa·m2/g, respectively. Chitosan + ZnO NP (1%) added to flax pulp showed the highest fungal mycelial inhibition (FMI) (1.85%) against Aspergillus flavus. Chitosan + Ag NP (1%) exhibited the highest FMI percentage (11.48%) when added to pulp against A. terreus. Pulp treated with Paraloid B-72 + Ag NP (1%) exhibited the highest activity against Stemphylium solani with an FMI value of 3.7%. The results indicate that the technological properties of the papersheets were enhanced with the addition of novel mixtures to the pulp.
Conservation Department Faculty of Archaeology Aswan University Aswan 81528 Egypt
Laboratory and Research Misr Edfu Pulp Writing and Printing Paper Co Aswan 81656 Egypt
Polymer Department National Research Centre Dokki Giza 12622 Egypt
Zobrazit více v PubMed
Agarwal M., Lvov Y., Varahramyan K. Conductive wood microfibres for smart paper through layer-by-layer nanocoating. Nanotechnology. 2006;17:5319–5325. doi: 10.1088/0957-4484/17/21/006. DOI
Ghule K., Ghule A.V., Chen B.-J., Ling Y.-C. Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. Green Chem. 2006;8:1034–1041. doi: 10.1039/b605623g. DOI
Koga H., Kitaoka T., Wariishi H. In situ synthesis of silver nanoparticles on zinc oxide whiskers incorporated in a paper matrix for antibacterial applications. J. Mater. Chem. 2009;19:2135–2140. doi: 10.1039/b820310e. DOI
Maryan A.S., Montazer M., Rashidi A. Introducing old-look, soft handle, flame retardant, and anti-bacterial properties to denim garments using nano clay. J. Eng. Fibers Fabr. 2013;8:68–77. doi: 10.1177/155892501300800416. DOI
Brodin F.W., Gregersen Ø.W., Syverud K. Cellulose nanofibrils: Challenges and possibilities as a paper additive or coating material—A review. Nord. Pulp. Pap. Res. J. 2014;29:156–166. doi: 10.3183/npprj-2014-29-01-p156-166. DOI
Rastogi V.K., Samyn P. Bio-based coatings for paper applications. Coatings. 2015;5:887–930. doi: 10.3390/coatings5040887. DOI
Nicu R., Bobu E., Desbrieres J. Chitosan as cationic polyelectrolyte in wet-end papermaking systems. Cellul. Chem. Technol. 2011;45:5–111.
Diab M., Curtil D., El-shinnawy N., Hassan M.L., Zeid I.F., Mauret E. Biobased polymers and cationic microfibrillated cellulose as retention and drainage aids in papermaking: Comparison between softwood and bagasse pulps. Ind. Crop. Prod. 2015;72:34–45. doi: 10.1016/j.indcrop.2015.01.072. DOI
Kjellgren H., Gällstedt M., Engström G., Järnström L. Barrier and surface properties of chitosan-coated greaseproof paper. Carbohyd. Polym. 2006;65:453–460. doi: 10.1016/j.carbpol.2006.02.005. DOI
Chen Z., Zhang H., Song Z., Qian X. Combination of glyoxal and chitosan as the crosslinking system to improve paper wet strength. BioResources. 2013;8:6087–6096. doi: 10.15376/biores.8.4.6087-6096. DOI
Fithriyah N.H., Erdawati Influence of nanoparticles coating on paper durability. J. Eng. Sci. Technol. 2015;10:1–11. Special Issue on SOMCHE 2014 & RSCE 2014 Conference, 3 January.
Hamzeh Y., Sabbaghi S., Ashori A., Abdulkhani A., Soltani F. Improving wet and dry strength properties of recycled old corrugated carton (OCC) pulp using various polymers. Carbohyd. Polym. 2013;94:577–583. doi: 10.1016/j.carbpol.2013.01.078. PubMed DOI
Allan G.G., Fox J.R., Crosby G.D., Sarkanen K.V. Chitosan, a Mediator for Fiber-Water Interactions in Paper. College of Forest Resources/University of Washington Press; Seattle, WA, USA: 1977. p. 125.
Ashori A., Raverty W.D., Jalaluddin H. Effect of chitosan addition on the surface properties of kenaf (Hibiscus cannabinus) paper. Iran Polym. J. 2005;14:807–814. doi: 10.1007/BF02875611. DOI
Vikele L., Laka M., Sable I., Rozenberga L., Grinfelds U., Zoldners J., Passas R., Mauret E. Effect of chitosan on properties of paper for packaging. Cellul. Chem. Technol. 2017;51:67–73.
Zemljič L.F., Valh J.V., Kreže T. Preparation of antimicrobial paper sheets using chitosan. Cellul. Chem. Technol. 2017;51:75–81.
Vellingiri K., Ramachandran T., Senthilkumar M. Eco-friendly application of nano chitosan in antimicrobial coatings in the textile industry. Nanosci. Nanotechnol. 2013;3:75–89. doi: 10.1166/nnl.2013.1575. DOI
Gavhane Y.N., Gurav A.S., Yadav A.V. Chitosan and Its Applications: A Review of Literature. Int. J. Res. Pharma Biomed. Sci. 2013;4:312–331.
Ravi Kumar M.N. A review of chitin and chitosan applications. React. Funct. Polym. 2000;46:1–27. doi: 10.1016/S1381-5148(00)00038-9. DOI
Nada A.M.A., El-Sakhawy M., Kamel S., Eid M.A.M., Adel A.M. Effect of chitosan and its derivatives on the mechanical and electrical properties of paper sheets. EGY J. Solid. 2005;28:359–377.
Shen J., Song Z., Qian X., Ni Y. A review on use of fillers in cellulosic paper for functional applications. Ind. Eng. Chem. Res. 2010;50:661–666. doi: 10.1021/ie1021078. DOI
Balan T., Guezennec C., Nicu R., Ciolacu F., Bobu E. Improving barrier and strength properties of paper by multi-layer coating with bio-based additives. Cellul. Chem. Technol. 2015;49:607–615.
Zhang G., Liu Y., Morikawa H., Chen Y. Application of ZnO nanoparticles to enhance the antimicrobial activity and ultraviolet protective property of bamboo pulp fabric. Cellulose. 2013;20:1877–1884. doi: 10.1007/s10570-013-9979-2. DOI
Völkel L., Ahn K., Hähner U., Gindl Altmutte W., Potthast A. Nano meets the sheet: Adhesive free application of nanocellulosic suspensions in paper conservation. Herit. Sci. 2017;5:23. doi: 10.1186/s40494-017-0134-5. DOI
Duran N., Lemes A.P., Seabra A.B. Review of Cellulose Nanocrystals Patents: Preparation, Composites and General Application. Rec. Pat. Nanotechnol. 2012;6:16–28. doi: 10.2174/187221012798109255. PubMed DOI
Chakraborty A., Sain M., Kortschot M. Cellulose microfibrils: A novel method of preparation using high shear refining and cryocrushing. Holzforschung. 2005;59:102–107. doi: 10.1515/HF.2005.016. DOI
Schlosser H. Nano disperse cellulose and nano fibril cellulose—New products for the preparation and improvement of paper and cartons. Wochenbl. Für Pap. 2008;136:252–260.
Hassan R.R., Mohamed W.S. Effect of Methyl methacrylate/hydroxyethyl methacrylate copolymer on mechanical properties optical and long-term durability of paper under accelerated ageing. Int. J. Conserv. Sci. 2017;8:237–250.
Hassan R.R., Mohamed W.S. The impact of methyl methacrylate hydroxyethyl methacrylate loaded with silver nanoparticles on mechanical properties of paper. Appl. Phys. A. 2018;124:551. doi: 10.1007/s00339-018-1989-3. DOI
Traistaru A.A.T., Timar M.C., Campeanu M., Croitoru C., Sandu I. Paraloid B72 versus Paraloid B72 with Nano-ZnO additive as consolidants for wooden artifacts. Mater. Plast. 2012;49:293–300.
Tiralová Z., Reinprecht L. Fungal Decay of Acrylate Treated Wood; Proceedings of the 35th Annual Meeting: International Research Group on Wood Preservation; Ljubljana, Slovenia. 6–10 June 2004; p. 30357. Document No. IRG/WP.
Pohleven F., Valantič A., Petrič M. Resistance of consolidated deteriorated wood to wood decay fungi; Proceedings of the IRG 44th Annual Meeting. IRG/WP; Stockholm, Sweden. 16–20 June 2013; p. e10812.
Mansour M.M.A., Salem M.Z.M. Evaluation of wood treated with some natural extracts and Paraloid B-72 against the fungus Trichoderma harzianum: Wood elemental composition, in-vitro and application evidence. Int. Biodeterior. Biodegrad. 2015;100:62–69. doi: 10.1016/j.ibiod.2015.02.009. DOI
Mansour M.M.A., Abdel-Megeed A., Nasser R.A., Salem M.Z.M. Comparative evaluation of some woody trees methanolic extracts and Paraloid B-72 against phytopathogenic mold fungi Alternaria tenuissima and Fusarium Culmorum. Bioresources. 2015;10:2570–2584. doi: 10.15376/biores.10.2.2570-2584. DOI
Kalpana Srivastava R., Mishra A.K., Nair M.V. Effective role of polymeric product in association with fungicide. Asiat. J. Biotechnol. Resour. 2011;2:553–557.
MacLeod J.M., Fleming G.J., Kubes G.J., Bolker H.I. The strength of kraft-AQ and soda-AQ pulps. Bleachable grade pulps. Tappi J. 1980;63:57–60.
Tapanes E., Naranjo M.E., Aguero C. Soda-anthraquinone pulping of bagasse. Nonwood Plant Fiber Pulping. 1984;15:19–24.
Sadawarte N.S., Dhawadkar A.R., Veeramani P. High yield pulp from bagasse. Nonwood Plant Fiber Pulping. 1986;12:31–33.
Bhardwaj N.K., Goyal S.K., Gupta A., Upadhyaya J.S., Ray A.K. Soda and Soda-Anthraquinone Pulping of Rice Straw. Appita J. 2005;58:180–185.
Khristova P., Kordsachia O., Patt R., Karar I., Khider T. Environmentally friendly pulping and bleaching of bagasse. Ind. Crop. Prod. 2006;23:131–139. doi: 10.1016/j.indcrop.2005.05.002. DOI
Al-Naamani L., Dobretsov S., Dutta J., Burgess J.G. Chitosan-zinc oxide nanocomposite coatings for the prevention of marine biofouling. Chemosphere. 2017;168:408–417. doi: 10.1016/j.chemosphere.2016.10.033. PubMed DOI
Salem M.Z.M., Mansour M.M.A., Mohamed W.S., Ali H.M., Hatamleh A.A. Evaluation of the antifungal activity of treated Acacia saligna wood with Paraloid B-72/TiO2 Nanocomposites against the growth of Alternaria tenuissima, Trichoderma harzianum, and Fusarium culmorum. Bioresources. 2017;12:l7615–l7627.
Horie C.V. Materials for Conservation: Organic Consolidants, Adhesives and Coatings. 2nd ed. Butterworth-Heinemann; Oxford, UK: 2013. pp. 1–489. DOI
Shafei K.A., Mustafa A.B., Mohamed W.S. Grafting emulsion polymerization of glycidyl methacrylate onto leather by chemical initiation systems. J. Appl. Polym. Sci. 2008;109:3923–3931. doi: 10.1002/app.28404. DOI
Azeredo H.M., Mattoso L.H., Avena-Bustillos R.J., Filho G.C., Munford M.L., Wood D., McHugh T.H. Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. J. Food Sci. 2010;75:N1–N7. doi: 10.1111/j.1750-3841.2009.01386.x. PubMed DOI
Syame S.M., Mohamed W.S., Mahmoud R.K., Omara S.T. Synthesis of Copper-Chitosan Nanoparticles and its application in treatment of local pathogenic isolates bacteria. Orient. J. Chem. 2017;33:2959–2969. doi: 10.13005/ojc/330632. DOI
Xu Y., Willis S., Jordan K., Sismour E. Chitosan nanocomposite films incorporating cellulose nanocrystals and grape pomace extracts. Packag. Technol. Sci. 2018;31:631–638. doi: 10.1002/pts.2389. DOI
TAPPI Test Method. Tappi Press; Atlanta, GA, USA: 2015.
Paper, Board and Pulps—Measurement of Diffuse Radiance Factor (Diffuse Reflectance Factor) International Organization for Standardization; Geneva, Switzerland: 2014. ISO 2469.
SAS . User Guide: Statistics (Release 8.02) SAS Institute; Cary, NC, USA: 2001.
Haldorai Y., Shim J.-J. Chitosan-Zinc Oxide hybrid composite for enhanced dye degradation and antibacterial activity. Compos. Interfaces. 2013;20:365–377. doi: 10.1080/15685543.2013.806124. DOI
Rowell R.M. Handbook of Wood Chemistry and Wood Composites. Taylor and Francis; Boca Raton, FL, USA: 2005. p. 487.
Monica E.K., Gellerstedt G., Henriksson G. Wood Chemistry and Wood Biotechnology. Volume 1. Walter de Gruyter GmbH and Co. KG; Berlin, Germany: 2009. p. 320.
Jahan M.S., Sabina R., Rubaiyat A. Alkaline pulping and bleaching of Acacia auriculiformis grown in Bangladesh. Turk. J. Agric. For. 2008;32:339–347.
Law K.N., Kokta B.V., Mao C.B. Fibre morphology and sodasulphite pulping of switchgrass. Biores. Technol. 2001;77:1–7. doi: 10.1016/S0960-8524(00)00140-1. PubMed DOI
Barba C., Rosa A.D., Vidal T., Colom J.F., Farriol X., Montane D. TCF bleached pulps from Miscanthus sinesis by the impregnation rapid steam pulping (IRSP) process. J. Wood Chem. Technol. 2002;22:249–266. doi: 10.1081/WCT-120016261. DOI
Finell M., Nilsson C., Olsson R., Agnemo R., Svensson S. Briquetting of fractionated reed canary-grass for pulp production. Ind. Crop. Prod. 2002;16:185–192. doi: 10.1016/S0926-6690(02)00036-5. DOI
Shatalov A.A., Pereira H. Influence of stem morphology on pulp and paper properties of Arundo donax L. reed. Ind. Crop. Prod. 2002;15:77–83. doi: 10.1016/S0926-6690(01)00098-X. DOI
Anapanurak W., Laemsak N., Veenin T., Atiwannapat P. Alkali-oxygen pulping on steam-explosion pretreated bamboo species. Production, Design and Industrial Aspects; Proceedings of the VIII World Bamboo Congress; Bangkok, Thailand. 16–19 September 2009; [(accessed on 31 September 2009)]. Available online: http://bambusc.org.br/wp-content/gallery/WBCVIII.
Marrakchi Z., Khiari R., Oueslati H., Mauret E., Mhenni F. Pulping and papermaking properties of Tunisian Alfa stems (Stipa tenacissima)—Effects of refining process. Ind. Crop. Prod. 2011;34:1572–1582. doi: 10.1016/j.indcrop.2011.05.022. DOI
Obi Reddy K., Uma Maheswari C., Shukla M., Muzenda E. Preparation, chemical composition, characterization, and properties of Napier grass paper sheets. Sep. Sci. Technol. 2014;49:1527–1534. doi: 10.1080/01496395.2014.893358. DOI
Pääkkö M., Ankerfors M., Kosonen H., Nykänen A., Ahola S., Österberg M., Ruokolainen J., Laine J., Larsson P.T., Ikkala O., et al. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules. 2007;8:1934–1941. doi: 10.1021/bm061215p. PubMed DOI
Siró I., Plackett D. Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose. 2010;17:459–494. doi: 10.1007/s10570-010-9405-y. DOI
Retulainen E., Nieminen K., Nurminen I. Enhancing strength properties of Kraft and CTMP fiber networks. Appita J. 1993;46:3–38.
Zou Y., Hsieh J.S. Microfibrillated cellulose for papermaking; Presented at the International Conference on Nanotechnology for the Forest Products Industry; Knoxville, TN, USA. 13–15 June 2007.
Bilodeau M., Bousfield D.W. Potential applications of nanofibrillated cellulose in printing and writing papers; Presented at the TAPPI International Conference on Nanotechnology; Montreal, QC, Canada. 4–7 June 2012.
Hamann L. Wet-End Applications of NFC. SUNPAP Workshop; Espoo, Finland: 2011.
Madani A., Kiiskinen H., Olson J.A., Martinez D.M. Fractionation of microfibrillated cellulose and its effects on tensile index and elongation of paper. Nord. Pulp Pap. Res. J. 2011;26:306–311. doi: 10.3183/npprj-2011-26-03-p306-311. DOI
Hentze H.-P. VTT Technical Research Centre of Finland 2010. [(accessed on 25 August 2011)]; From Nanocellulose Science Towards Applications. Available online: http://www.vtt.fi/files/events/PulPaper10/NFCApplications_HPH.pdf.
Kigawa R., Hayakawa N., Yamamoto N., Kawanobe W., Sano C., Aoki S. Evaluation of mould resistance of various synthetic resins used in conservation of historic sites. Hozon Kagaku. 2005;44:149–156.
Hirano S.N.N. Effects of chitosan, pectic acid, lysozyme, and chitinase on the growth of several phytopathogens. Agric. Biol. Chem. 1989;53:3065–3066.
Zhong Z., Chen R., Xing R., Chen X., Liu S., Guo Z., Ji X., Wang L., Li P. Synthesis and antifungal properties of sulfanilamide derivatives of chitosan. Carbohydr. Res. 2007;342:2390–2395. doi: 10.1016/j.carres.2007.07.015. PubMed DOI
Guerra-Sánchez M.G., Vega-Pérez J., Velázquez-del Valle M.G., Hernández-Lauzardo A.N. Antifungal activity and release of compounds on Rhizopus stolonifer (Ehrenb.: Fr.) Vuill. by effect of chitosan with different molecular weights. Pestic. Biochem. Phys. 2009;93:18–22.
Ziani K., Fernández-Pan I., Royo M., Mate J.I. Antifungal activity of films and solutions based on chitosan against typical seed fungi. Food Hydrocoll. 2009;23:2309–2314. doi: 10.1016/j.foodhyd.2009.06.005. DOI
Crawford B., Pakpour S., Kazemian N., Klironomos J., Stoeffler K., Rho D., Denault J., Milani A.S. Effect of fungal deterioration on physical and mechanical properties of hemp and flax natural fiber composites. Materials. 2017;10:1252. doi: 10.3390/ma10111252. PubMed DOI PMC