Anti-angiogenic effects of the blue-green alga Arthrospira platensis on pancreatic cancer
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31957261
PubMed Central
PMC7028863
DOI
10.1111/jcmm.14922
Knihovny.cz E-zdroje
- Klíčová slova
- Arthrospira platensis, angiogenesis, anticancer effects, carcinogenesis, pancreatic cancer,
- MeSH
- antioxidancia farmakologie MeSH
- endoteliální buňky účinky léků MeSH
- inhibitory angiogeneze farmakologie MeSH
- lidé MeSH
- myši nahé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory slinivky břišní farmakoterapie MeSH
- patologická angiogeneze farmakoterapie MeSH
- pohyb buněk účinky léků MeSH
- protinádorové látky farmakologie MeSH
- signální transdukce účinky léků MeSH
- Spirulina chemie MeSH
- upregulace účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antioxidancia MeSH
- inhibitory angiogeneze MeSH
- protinádorové látky MeSH
Arthrospira platensis, a blue-green alga, is a popular nutraceutical substance having potent antioxidant properties with potential anti-carcinogenic activities. The aim of our study was to assess the possible anti-angiogenic effects of A platensis in an experimental model of pancreatic cancer. The effects of an A platensis extract were investigated on human pancreatic cancer cells (PA-TU-8902) and immortalized endothelial-like cells (Ea.hy926). PA-TU-8902 pancreatic tumours xenografted to athymic mice were also examined. In vitro migration and invasiveness assays were performed on the tested cells. Multiple angiogenic factors and signalling pathways were analysed in the epithelial, endothelial and cancer cells, and tumour tissue. The A platensis extract exerted inhibitory effects on both migration and invasion of pancreatic cancer as well as endothelial-like cells. Tumours of mice treated with A platensis exhibited much lesser degrees of vascularization as measured by CD31 immunostaining (P = .004). Surprisingly, the VEGF-A mRNA and protein expressions were up-regulated in pancreatic cancer cells. A platensis inhibited ERK activation upstream of Raf and suppressed the expression of ERK-regulated proteins. Treatment of pancreatic cancer with A platensis was associated with suppressive effects on migration and invasiveness with various anti-angiogenic features, which might account for the anticancer effects of this blue-green alga.
Department of Cell Biology Faculty of Science Charles University Prague Czech Republic
Institute of Microbiology of the Czech Academy of Sciences Prague Czech Republic
Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Sies H, Stahl W, Sevanian A. Nutritional, dietary and postprandial oxidative stress. J Nutr. 2005;135:969‐972. PubMed
Tokudome S, Kuriki K, Moore MA. Seaweed and cancer prevention. Jpn J Cancer Res. 2001;92:1008‐1009. PubMed PMC
Teas J, Hebert JR, Fitton JH, Zimba PV. Algae ‐ a poor man's HAART? Med Hypotheses. 2004;62:507‐510. PubMed
Konickova R, Vankova K, Vanikova J, et al. Anti‐cancer effects of blue‐green alga Spirulina platensis, a natural source of bilirubin‐like tetrapyrrolic compounds. Ann Hepatol. 2014;13:273‐283. PubMed
Teas J. The consumption of seaweed as a protective factor in the etiology of breast cancer. Med Hypotheses. 1981;7:601‐613. PubMed
Wu LC, Ho JA, Shieh MC, Lu I‐W. Antioxidant and antiproliferative activities of Spirulina and Chlorella water extracts. J Agric Food Chem. 2005;53:4207‐4212. PubMed
Yamagishi S, Nakamura K, Inoue H. Therapeutic potentials of unicellular green alga Chlorella in advanced glycation end product (AGE)‐related disorders. Med Hypotheses. 2005;65:953‐955. PubMed
Athukorala Y, Kim KN, Jeon YJ. Antiproliferative and antioxidant properties of an enzymatic hydrolysate from brown alga, Ecklonia cava . Food Chem Toxicol. 2006;44:1065‐1074. PubMed
Yuan YV, Walsh NA. Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds. Food Chem Toxicol. 2006;44:1144‐1150. PubMed
Jiraskova A, Novotny J, Novotny L, et al. Association of serum bilirubin and promoter variations in HMOX1 and UGT1A1 genes with sporadic colorectal cancer. Int J Cancer. 2012;131:1549‐1555. PubMed
Liu Q, Huang Y, Zhang R, Cai T, Cai Y. Medical application of Spirulina platensis derived C‐phycocyanin. Evid Based Complement Alternat Med. 2016;2016:7803846. PubMed PMC
Zhao Y, Adjei AA. Targeting angiogenesis in cancer therapy: moving beyond vascular endothelial growth factor. Oncologist. 2015;20:660‐673. PubMed PMC
Wilhelm SM, Carter C, Tang L, et al. BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64:7099‐7109. PubMed
Meloche S, Pouyssegur J. The ERK1/2 mitogen‐activated protein kinase pathway as a master regulator of the G1‐ to S‐phase transition. Oncogene. 2007;26:3227‐3239. PubMed
Kidger AM, Sipthorp J, Cook SJ. ERK1/2 inhibitors: new weapons to inhibit the RAS‐regulated RAF‐MEK1/2‐ERK1/2 pathway. Pharmacol Ther. 2018;187:45‐60. PubMed
Assifi MM, Hines OJ. Anti‐angiogenic agents in pancreatic cancer: a review. Anticancer Agents Med Chem. 2011;11:464‐469. PubMed
Nedaeinia R, Avan A, Manian M, Ghayour‐Mobarhan M. EGFR as a potential target for the treatment of pancreatic cancer: dilemma and controversies. Curr Drug Targets. 2014;15:1293‐1301. PubMed
Fitzgerald TL, Lertpiriyapong K, Cocco L, et al. Roles of EGFR and KRAS and their downstream signaling pathways in pancreatic cancer and pancreatic cancer stem cells. Adv Biol Regul. 2015;59:65‐81. PubMed
Caslavsky J, Klimova Z, Vomastek T. ERK and RSK regulate distinct steps of a cellular program that induces transition from multicellular epithelium to single cell phenotype. Cell Signal. 2013;25:2743‐2751. PubMed
Nemeckova I, Serwadczak A, Oujo B, et al. High soluble endoglin levels do not induce endothelial dysfunction in mouse aorta. PLoS ONE. 2015;10:e0119665. PubMed PMC
Cristina C, Perez‐Millan MI, Luque G, et al. VEGF and CD31 association in pituitary adenomas. Endocr Pathol. 2010;21:154‐160. PubMed
Matsumoto K, Ema M. Roles of VEGF‐A signalling in development, regeneration, and tumours. J Biochem. 2014;156:1‐10. PubMed
Summy JM, Trevino JG, Baker CH, Gallick GE. c‐Src regulates constitutive and EGF‐mediated VEGF expression in pancreatic tumor cells through activation of phosphatidyl inositol‐3 kinase and p38 MAPK. Pancreas. 2005;31:263‐274. PubMed
Wang L, Wu H, Wang L, et al. Expression of amphiregulin predicts poor outcome in patients with pancreatic ductal adenocarcinoma. Diagn Pathol. 2016;11:60. PubMed PMC
Neuzillet C, Hammel P, Tijeras‐Raballand A, Couvelard A, Raymond E. Targeting the Ras‐ERK pathway in pancreatic adenocarcinoma. Cancer Metastasis Rev. 2013;32:147‐162. PubMed
Murthy D, Attri KS, Singh PK. Phosphoinositide 3‐kinase signaling pathway in pancreatic ductal adenocarcinoma progression, pathogenesis, and therapeutics. Front Physiol. 2018;9:335. PubMed PMC
Fritsche‐Guenther R, Witzel F, Kempa S, Brummer T, Sers C, Blüthgen N. Effects of RAF inhibitors on PI3K/AKT signalling depend on mutational status of the RAS/RAF signalling axis. Oncotarget. 2016;7:7960‐7969. PubMed PMC
Ghanaatgar‐Kasbi S, Khorrami S, Avan A, Aledavoud SA, Ferns GA. Targeting the C‐MET/HGF signaling pathway in pancreatic ductal adenocarcinoma. Curr Pharm Des. 2018;24:4619‐4625. PubMed
Doehn U, Hauge C, Frank SR, et al. RSK is a principal effector of the RAS‐ERK pathway for eliciting a coordinate promotile/invasive gene program and phenotype in epithelial cells. Mol Cell. 2009;35:511‐522. PubMed PMC
Fitzmaurice C, Dicker D, Pain A, et al. The global burden of cancer 2013. JAMA Oncol. 2015;1:505‐527. PubMed PMC
Ross SA. Evidence for the relationship between diet and cancer. Exp Oncol. 2010;32:137‐142. PubMed
de Mejia EG, Dia VP. The role of nutraceutical proteins and peptides in apoptosis, angiogenesis, and metastasis of cancer cells. Cancer Metastasis Rev. 2010;29:511‐528. PubMed
Karkos PD, Leong SC, Karkos CD, et al. Spirulina in clinical practice: evidence‐based human applications. Evid Based Complement Alternat Med. 2011;2011:531053. PubMed PMC
Viacava P, Gasperi M, Acerbi G, et al. Microvascular density and vascular endothelial growth factor expression in normal pituitary tissue and pituitary adenomas. J Endocrinol Invest. 2003;26:23‐28. PubMed
Ek ET, Ojaimi J, Kitagawa Y, Choong P. Does the degree of intratumoural microvessel density and VEGF expression have prognostic significance in osteosarcoma? Oncol Rep. 2006;16:17‐23. PubMed
Choi WW, Lewis MM, Lawson D, et al. Angiogenic and lymphangiogenic microvessel density in breast carcinoma: correlation with clinicopathologic parameters and VEGF‐family gene expression. Mod Pathol. 2005;18:143‐152. PubMed
Rajesh L, Joshi K, Bhalla V, Dey P, Radotra BD, Nijhawan R Correlation between VEGF expression and angiogenesis in breast carcinoma. Anal Quant Cytol Histol. 2004;26:105‐108. PubMed
Smith RA, Tang J, Tudur‐Smith C, Neoptolemos JP, Ghaneh P. Meta‐analysis of immunohistochemical prognostic markers in resected pancreatic cancer. Br J Cancer. 2011;104:1440‐1451. PubMed PMC
Dragovich T, Laheru D, Dayyani F, et al. Phase II trial of vatalanib in patients with advanced or metastatic pancreatic adenocarcinoma after first‐line gemcitabine therapy (PCRT O4–001). Cancer Chemother Pharmacol. 2014;74:379‐387. PubMed PMC
Katsura Y, Wada H, Murakami M, et al. PTK787/ZK222584 combined with interferon alpha and 5‐fluorouracil synergistically inhibits VEGF signaling pathway in hepatocellular carcinoma. Ann Surg Oncol. 2013;20(Suppl 3):S517‐S526. PubMed
Murakami M, Kobayashi S, Marubashi S, et al. Tyrosine kinase inhibitor PTK/ZK enhances the antitumor effects of interferon‐alpha/5‐fluorouracil therapy for hepatocellular carcinoma cells. Ann Surg Oncol. 2011;18:589‐596. PubMed
Zheng J, Nagda DA, Lajud SA, et al. Biliverdin's regulation of reactive oxygen species signalling leads to potent inhibition of proliferative and angiogenic pathways in head and neck cancer. Br J Cancer. 2014;110:2116‐2122. PubMed PMC
Loboda A, Jazwa A, Grochot‐Przeczek A, et al. Heme oxygenase‐1 and the vascular bed: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2008;10:1767‐1812. PubMed
Lu KV, Chang JP, Parachoniak CA, et al. VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell. 2012;22:21‐35. PubMed PMC
Wang CQ, Huang YW, Wang SW, et al. Amphiregulin enhances VEGF‐A production in human chondrosarcoma cells and promotes angiogenesis by inhibiting miR‐206 via FAK/c‐Src/PKCdelta pathway. Cancer Lett. 2017;385:261‐270. PubMed
Terrell EM, Morrison DK. Ras‐mediated activation of the Raf family kinases. Cold Spring Harb Perspect Med. 2019;9(1):a033746. PubMed PMC
Bryant KL, Mancias JD, Kimmelman AC, et al. KRAS: feeding pancreatic cancer proliferation. Trends Biochem Sci. 2014;39:91‐100. PubMed PMC
Muvaffak A, Pan Q, Yan H, et al. Evaluating TBK1 as a therapeutic target in cancers with activated IRF3. Mol Cancer Res. 2014;12:1055‐1066. PubMed
Chen SH, Zhang Y, Van Horn RD, et al. Oncogenic BRAF deletions that function as homodimers and are sensitive to inhibition by RAF dimer inhibitor LY3009120. Cancer Discov. 2016;6:300‐315. PubMed
Webb DJ, Donais K, Whitmore LA, et al. FAK‐Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol. 2004;6:154‐161. PubMed
Vomastek T, Iwanicki MP, Schaeffer HJ, Tarcsafalvi A, Parsons JT, Weber MJ. RACK1 targets the extracellular signal‐regulated kinase/mitogen‐activated protein kinase pathway to link integrin engagement with focal adhesion disassembly and cell motility. Mol Cell Biol. 2007;27:8296‐8305. PubMed PMC
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial‐mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178‐196. PubMed PMC
Pothula SP, Xu Z, Goldstein D, et al. Targeting the HGF/c‐MET pathway: stromal remodelling in pancreatic cancer. Oncotarget. 2017;8:76722‐76739. PubMed PMC
Dong G, Chen Z, Li ZY, Yeh NT, Bancroft CC, Van Waes C. Hepatocyte growth factor/scatter factor‐induced activation of MEK and PI3K signal pathways contributes to expression of proangiogenic cytokines interleukin‐8 and vascular endothelial growth factor in head and neck squamous cell carcinoma. Cancer Res. 2001;61:5911‐5918. PubMed
Matsumura A, Kubota T, Taiyoh H, et al. HGF regulates VEGF expression via the c‐Met receptor downstream pathways, PI3K/Akt, MAPK and STAT3, in CT26 murine cells. Int J Oncol. 2013;42:535‐542. PubMed
Pages G, Pouyssegur J. Transcriptional regulation of the Vascular Endothelial Growth Factor gene–a concert of activating factors. Cardiovasc Res. 2005;65:564‐573. PubMed
Mendoza MC, Er EE, Blenis J. The Ras‐ERK and PI3K‐mTOR pathways: cross‐talk and compensation. Trends Biochem Sci. 2011;36:320‐328. PubMed PMC
Hoeflich KP, O'Brien C, Boyd Z, et al. In vivo antitumor activity of MEK and phosphatidylinositol 3‐kinase inhibitors in basal‐like breast cancer models. Clin Cancer Res. 2009;15:4649‐4664. PubMed
Gan Y, Shi C, Inge L, Hibner M, Balducci J, Huang Y. Differential roles of ERK and Akt pathways in regulation of EGFR‐mediated signaling and motility in prostate cancer cells. Oncogene. 2010;29:4947‐4958. PubMed
Lehr S, Kotzka J, Avci H, et al. Identification of major ERK‐related phosphorylation sites in Gab1. Biochemistry. 2004;43:12133‐12140. PubMed
Turke AB, Song Y, Costa C, et al. MEK inhibition leads to PI3K/AKT activation by relieving a negative feedback on ERBB receptors. Cancer Res. 2012;72:3228‐3237. PubMed PMC
Zmajkovicova K, Jesenberger V, Catalanotti F, Baumgartner C, Reyes G, Baccarini M. MEK1 is required for PTEN membrane recruitment, AKT regulation, and the maintenance of peripheral tolerance. Mol Cell. 2013;50:43‐55. PubMed PMC