Morphological, optical and photovoltaic characteristics of MoSe2/SiOx/Si heterojunctions

. 2020 Jan 27 ; 10 (1) : 1215. [epub] 20200127

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31988375

Grantová podpora
UID/FIS/04650/2019 Fundação para a Ciência e a Tecnologia
UID/CTM/04540/2019 Fundação para a Ciência e a Tecnologia
UID/CTM/04540/2019 Fundação para a Ciência e a Tecnologia
MP1406 European Cooperation in Science and Technology
MP1406 European Cooperation in Science and Technology
MP1406 European Cooperation in Science and Technology
MP1406 European Cooperation in Science and Technology
proposal 20182042 Central European Research Infrastructure Consortium
proposal 20182042 Central European Research Infrastructure Consortium
proposal 20182042 Central European Research Infrastructure Consortium

Odkazy

PubMed 31988375
PubMed Central PMC6985159
DOI 10.1038/s41598-020-58164-7
PII: 10.1038/s41598-020-58164-7
Knihovny.cz E-zdroje

This work reports the effect of different processing parameters on the structural and morphological characteristics of MoSe2 layers grown by chemical vapour deposition (CVD), using MoO3 and Se powders as solid precursors. It shows the strong dependence of the size, shape and thickness of the MoSe2 layers on the processing parameters. The morphology of the samples was investigated by field emission scanning electron microscopy (FESEM) and the thickness of the deposited layers was determined by atomic force microscopy (AFM). Raman and photoluminescence (PL) spectroscopies were used to confirm the high quality of the MoSe2 layers. Surface composition was examined by photoelectron spectroscopy (XPS). Moreover, the MoSe2/SiOx/Si heterojunctions exhibit diode behaviour, with a rectification ratio of 10, measured at ±2.0 V, which is due to the p-i-n heterojunctions formed at the p-Si/SiOx/MoSe2 interface. A photovoltaic effect was observed with a short circuit current density (Jsc), open circuit voltage (VOC) and efficiency of -0.80 mA/cm2, 1.55 V and 0.5%, respectively. These results provide a guide for the preparation of p-i-n heterojunctions based on few-layer MoSe2 with improved photovoltaic response.

Zobrazit více v PubMed

Chhowalla M, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013;5:263–275. doi: 10.1038/nchem.1589. PubMed DOI

Shi Y, Li H, Li L-J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev. 2015;44:2744–2756. doi: 10.1039/C4CS00256C. PubMed DOI

Li X, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science. 2009;324:1312–1314. doi: 10.1126/science.1171245. PubMed DOI

Kim KK, et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 2012;12:161–166. doi: 10.1021/nl203249a. PubMed DOI

Wang S, et al. Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Mater. 2014;26:6371–6379.

Fu Q, et al. Controllable synthesis of high quality monolayer WS2 on a SiO2/Si substrate by chemical vapor deposition. RSC Adv. 2015;5:15795–15799. doi: 10.1039/C5RA00210A. DOI

Liu B, Fathi M, Chen L, Abbas A, Zhou C. Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study. ACS Nano. 2015;9:6119–6127. doi: 10.1021/acsnano.5b01301. PubMed DOI

Shaw JC, et al. Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Res. 2014;7:511–517. doi: 10.1007/s12274-014-0417-z. DOI

Chen T, et al. Controlled growth of atomically thin MoSe2 films and nanoribbons by chemical vapor deposition. 2D Materials. 2019;6:025002. doi: 10.1088/2053-1583/aaf9cc. DOI

Lu X, et al. Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates. Nano Lett. 2014;14:2419–2425. doi: 10.1021/nl5000906. PubMed DOI

Bachmatiuk A, et al. Chemical vapor deposition of twisted bilayer and few-layer MoSe2 over SiOx substrates. Nanotechnol. 2014;25:365603. doi: 10.1088/0957-4484/25/36/365603. PubMed DOI

Lu J, et al. Exfoliated nanosheet crystallite of cesium tungstate with 2D pyrochlore structure: synthesis, characterization, and photochromic properties. ACS Nano. 2017;11:1689–1695. doi: 10.1021/acsnano.6b07512. PubMed DOI

Xia J, et al. CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. Nanoscale. 2014;6:8949–8955. doi: 10.1039/C4NR02311K. PubMed DOI

Chang Y, et al. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano. 2014;8:8582–8590. doi: 10.1021/nn503287m. PubMed DOI

Roy T, et al. Field-effect transistors built from all two-dimensional material components. ACS Nano. 2014;8:6259–6264. doi: 10.1021/nn501723y. PubMed DOI

Benameur MM, et al. Visibility of dichalcogenide nanolayers. Nanotechnol. 2011;22:125706. doi: 10.1088/0957-4484/22/12/125706. PubMed DOI

Blake P, et al. Making graphene visible. Appl. Phys. Lett. 2007;91:063124. doi: 10.1063/1.2768624. DOI

Silva JPB, Marques CA, Moreira JA, Conde O. Resistive switching in MoSe2/BaTiO3 hybrid structures. J. Mater. Chem. C. 2017;5:10353–10359. doi: 10.1039/C7TC03024J. DOI

Ding G, et al. Metal‐organic frameworks: 2D metal–organic framework nanosheets with time‐dependent and multilevel memristive switching. Adv. Funct. Mater. 2019;29:1806637. doi: 10.1002/adfm.201806637. DOI

Hsiao K-J, Liu J-D, Hsieha H-H, Jiang T-S. Electrical impact of MoSe2 on CIGS thin-film solar cells. Phys. Chem. Chem. Phys. 2013;15:18174–18178. doi: 10.1039/c3cp53310g. PubMed DOI

Shim GW, et al. Large-area single-layer MoSe2 and its van der Waals heterostructures. ACS Nano. 2014;8:6655–6662. doi: 10.1021/nn405685j. PubMed DOI

Hao L, et al. Electrical and photovoltaic characteristics of MoS2/Si p-n junctions. J. Appl. Phys. 2015;117:114502. doi: 10.1063/1.4915951. DOI

Almeida Marques, C. Growth and characterization of low dimensional Mo selenide, MSc Thesis, University of Lisbon, http://hdl.handle.net/10451/25252 (2016).

Wang H, et al. Revealing the microscopic CVD growth mechanism of MoSe2 and the role of hydrogen gas during the growth procedure. Nanotechnology. 2018;29(314001):1–9. PubMed

Tongay S, et al. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 2012;12:5576–5580. doi: 10.1021/nl302584w. PubMed DOI

Xenogiannopoulou E, et al. High-quality, large-area MoSe2 and MoSe2/Bi2Se3 heterostructures on AlN(0001)/Si(111) substrates by molecular beam epitaxy. Nanoscale. 2015;7:7896–7905. doi: 10.1039/C4NR06874B. PubMed DOI

Zhao Y, Lee H, Choi W, Fei W, Lee CJ. Large-area synthesis of monolayer MoSe2 films on SiO2/Si substrates by atmospheric pressure chemical vapor deposition. RSC Adv. 2017;7:27969–27973. doi: 10.1039/C7RA03642F. DOI

Larina TV, et al. Influence of the surface layer of hydrated silicon on the stabilization of Co2+ cations in Zr–Si fiberglass materials according to XPS, UV-Vis DRS, and differential dissolution phase analysis. RSC Adv. 2015;5:79898–79905. doi: 10.1039/C5RA12551K. DOI

Hao LZ, et al. Enhanced photovoltaic characteristics of MoS2/Si hybrid solar cells by metal Pd chemical doping. RSC Adv. 2016;6:1346–1350. doi: 10.1039/C5RA24453F. DOI

Hao LZ, Liu YJ, Han ZD, Xu ZJ, Zhu J. Giant lateral photovoltaic effect in MoS2/SiO2/Si p-i-n junction. J. Alloys and Comp. 2018;735:88–97. doi: 10.1016/j.jallcom.2017.11.094. DOI

Rehman AU, et al. n-MoS2/p-Si solar cells with Al2O3 passivation for enhanced photogeneration. ACS Appl. Mater. Interfaces. 2016;8:29383–29390. doi: 10.1021/acsami.6b07064. PubMed DOI

Yang Y, Huo N, Li J. Gate modulated and enhanced optoelectronic performance of MoSe2 and CVD-grown MoS2 heterojunctions. RSC Adv. 2017;7:41052–41056. doi: 10.1039/C7RA07672J. DOI

Li X, et al. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy. Sci. Adv. 2016;2:e1501882. doi: 10.1126/sciadv.1501882. PubMed DOI PMC

Yang Y, Huo N, Li J. Gate tunable photovoltaic effect in a MoSe2 homojunction enabled with different thicknesses. J. Mater. Chem. C. 2017;5:7051–7056. doi: 10.1039/C7TC01806A. DOI

Hao LH, et al. High-performance n-MoS2/i-SiO2/p-Si heterojunction solar cells. Nanoscale. 2015;7:8304–8308. doi: 10.1039/C5NR01275A. PubMed DOI

Tsai M-L, et al. Monolayer MoS2 heterojunction solar cells. ACS Nano. 2014;88:8317–8322. doi: 10.1021/nn502776h. PubMed DOI

Xu H, et al. Large area MoS2/Si heterojunction-based solar cell through sol-gel method. Mater. Lett. 2019;238:13–16. doi: 10.1016/j.matlet.2018.11.051. DOI

Akama T, et al. Schottky solar cell using few-layered transition metal dichalcogenides toward large-scale fabrication of semitransparent and flexible power generator. Scientific Reports. 2017;7:11967. doi: 10.1038/s41598-017-12287-6. PubMed DOI PMC

Yu WJ, et al. Unusually efficient photocurrent extraction in monolayer van der Waals heterostructure by tunnelling through discretized barriers. Nat. Commun. 2016;7:13278. doi: 10.1038/ncomms13278. PubMed DOI PMC

Flöry N, et al. A WSe2/MoSe2 heterostructure photovoltaic device. Appl. Phys. Lett. 2015;107:123106. doi: 10.1063/1.4931621. DOI

Silva JPB, et al. Enhanced resistive switching characteristics in Pt/BaTiO3/ITO structures through insertion of HfO2:Al2O3 (HAO) dielectric thin layer. Scientific Reports. 2017;7:46350. doi: 10.1038/srep46350. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...