Morphological, optical and photovoltaic characteristics of MoSe2/SiOx/Si heterojunctions
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
UID/FIS/04650/2019
Fundação para a Ciência e a Tecnologia
UID/CTM/04540/2019
Fundação para a Ciência e a Tecnologia
UID/CTM/04540/2019
Fundação para a Ciência e a Tecnologia
MP1406
European Cooperation in Science and Technology
MP1406
European Cooperation in Science and Technology
MP1406
European Cooperation in Science and Technology
MP1406
European Cooperation in Science and Technology
proposal 20182042
Central European Research Infrastructure Consortium
proposal 20182042
Central European Research Infrastructure Consortium
proposal 20182042
Central European Research Infrastructure Consortium
PubMed
31988375
PubMed Central
PMC6985159
DOI
10.1038/s41598-020-58164-7
PII: 10.1038/s41598-020-58164-7
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
This work reports the effect of different processing parameters on the structural and morphological characteristics of MoSe2 layers grown by chemical vapour deposition (CVD), using MoO3 and Se powders as solid precursors. It shows the strong dependence of the size, shape and thickness of the MoSe2 layers on the processing parameters. The morphology of the samples was investigated by field emission scanning electron microscopy (FESEM) and the thickness of the deposited layers was determined by atomic force microscopy (AFM). Raman and photoluminescence (PL) spectroscopies were used to confirm the high quality of the MoSe2 layers. Surface composition was examined by photoelectron spectroscopy (XPS). Moreover, the MoSe2/SiOx/Si heterojunctions exhibit diode behaviour, with a rectification ratio of 10, measured at ±2.0 V, which is due to the p-i-n heterojunctions formed at the p-Si/SiOx/MoSe2 interface. A photovoltaic effect was observed with a short circuit current density (Jsc), open circuit voltage (VOC) and efficiency of -0.80 mA/cm2, 1.55 V and 0.5%, respectively. These results provide a guide for the preparation of p-i-n heterojunctions based on few-layer MoSe2 with improved photovoltaic response.
Centro de Física das Universidades do Minho e do Porto Campus de Gualtar 4710 057 Braga Portugal
Departamento de Física Faculdade de Ciências Universidade de Lisboa 1749 016 Lisboa Portugal
GeePs UMR CNRS 8507 11 rue Joliot Curie Plateau de Moulon 91192 Gif sur Yvette France
Zobrazit více v PubMed
Chhowalla M, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013;5:263–275. doi: 10.1038/nchem.1589. PubMed DOI
Shi Y, Li H, Li L-J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev. 2015;44:2744–2756. doi: 10.1039/C4CS00256C. PubMed DOI
Li X, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science. 2009;324:1312–1314. doi: 10.1126/science.1171245. PubMed DOI
Kim KK, et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 2012;12:161–166. doi: 10.1021/nl203249a. PubMed DOI
Wang S, et al. Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Mater. 2014;26:6371–6379.
Fu Q, et al. Controllable synthesis of high quality monolayer WS2 on a SiO2/Si substrate by chemical vapor deposition. RSC Adv. 2015;5:15795–15799. doi: 10.1039/C5RA00210A. DOI
Liu B, Fathi M, Chen L, Abbas A, Zhou C. Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study. ACS Nano. 2015;9:6119–6127. doi: 10.1021/acsnano.5b01301. PubMed DOI
Shaw JC, et al. Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Res. 2014;7:511–517. doi: 10.1007/s12274-014-0417-z. DOI
Chen T, et al. Controlled growth of atomically thin MoSe2 films and nanoribbons by chemical vapor deposition. 2D Materials. 2019;6:025002. doi: 10.1088/2053-1583/aaf9cc. DOI
Lu X, et al. Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates. Nano Lett. 2014;14:2419–2425. doi: 10.1021/nl5000906. PubMed DOI
Bachmatiuk A, et al. Chemical vapor deposition of twisted bilayer and few-layer MoSe2 over SiOx substrates. Nanotechnol. 2014;25:365603. doi: 10.1088/0957-4484/25/36/365603. PubMed DOI
Lu J, et al. Exfoliated nanosheet crystallite of cesium tungstate with 2D pyrochlore structure: synthesis, characterization, and photochromic properties. ACS Nano. 2017;11:1689–1695. doi: 10.1021/acsnano.6b07512. PubMed DOI
Xia J, et al. CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. Nanoscale. 2014;6:8949–8955. doi: 10.1039/C4NR02311K. PubMed DOI
Chang Y, et al. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano. 2014;8:8582–8590. doi: 10.1021/nn503287m. PubMed DOI
Roy T, et al. Field-effect transistors built from all two-dimensional material components. ACS Nano. 2014;8:6259–6264. doi: 10.1021/nn501723y. PubMed DOI
Benameur MM, et al. Visibility of dichalcogenide nanolayers. Nanotechnol. 2011;22:125706. doi: 10.1088/0957-4484/22/12/125706. PubMed DOI
Blake P, et al. Making graphene visible. Appl. Phys. Lett. 2007;91:063124. doi: 10.1063/1.2768624. DOI
Silva JPB, Marques CA, Moreira JA, Conde O. Resistive switching in MoSe2/BaTiO3 hybrid structures. J. Mater. Chem. C. 2017;5:10353–10359. doi: 10.1039/C7TC03024J. DOI
Ding G, et al. Metal‐organic frameworks: 2D metal–organic framework nanosheets with time‐dependent and multilevel memristive switching. Adv. Funct. Mater. 2019;29:1806637. doi: 10.1002/adfm.201806637. DOI
Hsiao K-J, Liu J-D, Hsieha H-H, Jiang T-S. Electrical impact of MoSe2 on CIGS thin-film solar cells. Phys. Chem. Chem. Phys. 2013;15:18174–18178. doi: 10.1039/c3cp53310g. PubMed DOI
Shim GW, et al. Large-area single-layer MoSe2 and its van der Waals heterostructures. ACS Nano. 2014;8:6655–6662. doi: 10.1021/nn405685j. PubMed DOI
Hao L, et al. Electrical and photovoltaic characteristics of MoS2/Si p-n junctions. J. Appl. Phys. 2015;117:114502. doi: 10.1063/1.4915951. DOI
Almeida Marques, C. Growth and characterization of low dimensional Mo selenide, MSc Thesis, University of Lisbon, http://hdl.handle.net/10451/25252 (2016).
Wang H, et al. Revealing the microscopic CVD growth mechanism of MoSe2 and the role of hydrogen gas during the growth procedure. Nanotechnology. 2018;29(314001):1–9. PubMed
Tongay S, et al. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 2012;12:5576–5580. doi: 10.1021/nl302584w. PubMed DOI
Xenogiannopoulou E, et al. High-quality, large-area MoSe2 and MoSe2/Bi2Se3 heterostructures on AlN(0001)/Si(111) substrates by molecular beam epitaxy. Nanoscale. 2015;7:7896–7905. doi: 10.1039/C4NR06874B. PubMed DOI
Zhao Y, Lee H, Choi W, Fei W, Lee CJ. Large-area synthesis of monolayer MoSe2 films on SiO2/Si substrates by atmospheric pressure chemical vapor deposition. RSC Adv. 2017;7:27969–27973. doi: 10.1039/C7RA03642F. DOI
Larina TV, et al. Influence of the surface layer of hydrated silicon on the stabilization of Co2+ cations in Zr–Si fiberglass materials according to XPS, UV-Vis DRS, and differential dissolution phase analysis. RSC Adv. 2015;5:79898–79905. doi: 10.1039/C5RA12551K. DOI
Hao LZ, et al. Enhanced photovoltaic characteristics of MoS2/Si hybrid solar cells by metal Pd chemical doping. RSC Adv. 2016;6:1346–1350. doi: 10.1039/C5RA24453F. DOI
Hao LZ, Liu YJ, Han ZD, Xu ZJ, Zhu J. Giant lateral photovoltaic effect in MoS2/SiO2/Si p-i-n junction. J. Alloys and Comp. 2018;735:88–97. doi: 10.1016/j.jallcom.2017.11.094. DOI
Rehman AU, et al. n-MoS2/p-Si solar cells with Al2O3 passivation for enhanced photogeneration. ACS Appl. Mater. Interfaces. 2016;8:29383–29390. doi: 10.1021/acsami.6b07064. PubMed DOI
Yang Y, Huo N, Li J. Gate modulated and enhanced optoelectronic performance of MoSe2 and CVD-grown MoS2 heterojunctions. RSC Adv. 2017;7:41052–41056. doi: 10.1039/C7RA07672J. DOI
Li X, et al. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy. Sci. Adv. 2016;2:e1501882. doi: 10.1126/sciadv.1501882. PubMed DOI PMC
Yang Y, Huo N, Li J. Gate tunable photovoltaic effect in a MoSe2 homojunction enabled with different thicknesses. J. Mater. Chem. C. 2017;5:7051–7056. doi: 10.1039/C7TC01806A. DOI
Hao LH, et al. High-performance n-MoS2/i-SiO2/p-Si heterojunction solar cells. Nanoscale. 2015;7:8304–8308. doi: 10.1039/C5NR01275A. PubMed DOI
Tsai M-L, et al. Monolayer MoS2 heterojunction solar cells. ACS Nano. 2014;88:8317–8322. doi: 10.1021/nn502776h. PubMed DOI
Xu H, et al. Large area MoS2/Si heterojunction-based solar cell through sol-gel method. Mater. Lett. 2019;238:13–16. doi: 10.1016/j.matlet.2018.11.051. DOI
Akama T, et al. Schottky solar cell using few-layered transition metal dichalcogenides toward large-scale fabrication of semitransparent and flexible power generator. Scientific Reports. 2017;7:11967. doi: 10.1038/s41598-017-12287-6. PubMed DOI PMC
Yu WJ, et al. Unusually efficient photocurrent extraction in monolayer van der Waals heterostructure by tunnelling through discretized barriers. Nat. Commun. 2016;7:13278. doi: 10.1038/ncomms13278. PubMed DOI PMC
Flöry N, et al. A WSe2/MoSe2 heterostructure photovoltaic device. Appl. Phys. Lett. 2015;107:123106. doi: 10.1063/1.4931621. DOI
Silva JPB, et al. Enhanced resistive switching characteristics in Pt/BaTiO3/ITO structures through insertion of HfO2:Al2O3 (HAO) dielectric thin layer. Scientific Reports. 2017;7:46350. doi: 10.1038/srep46350. PubMed DOI PMC