The Spectrum of FANCM Protein Truncating Variants in European Breast Cancer Cases
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16732
Associazione Italiana per la Ricerca sul Cancro - International
PubMed
31991861
PubMed Central
PMC7073216
DOI
10.3390/cancers12020292
PII: cancers12020292
Knihovny.cz E-zdroje
- Klíčová slova
- FANCM truncating variants, PTVs, breast cancer predisposition, breast cancer risk factors, mutation spectrum,
- Publikační typ
- časopisecké články MeSH
Germline protein truncating variants (PTVs) in the FANCM gene have been associated with a 2-4-fold increased breast cancer risk in case-control studies conducted in different European populations. However, the distribution and the frequency of FANCM PTVs in Europe have never been investigated. In the present study, we collected the data of 114 European female breast cancer cases with FANCM PTVs ascertained in 20 centers from 13 European countries. We identified 27 different FANCM PTVs. The p.Gln1701* PTV is the most common PTV in Northern Europe with a maximum frequency in Finland and a lower relative frequency in Southern Europe. On the contrary, p.Arg1931* seems to be the most common PTV in Southern Europe. We also showed that p.Arg658*, the third most common PTV, is more frequent in Central Europe, and p.Gln498Thrfs*7 is probably a founder variant from Lithuania. Of the 23 rare or unique FANCM PTVs, 15 have not been previously reported. We provide here the initial spectrum of FANCM PTVs in European breast cancer cases.
Àrea of Molecular and Clinical Genetics University Hospital Vall d´Hebron Barcelona 08035 Spain
Biomedical Sciences Institute University of Porto Porto 4050 313 Portugal
Center for Genomic Medicine Copenhagen University Hospital Rigshospitalet Copenhagen 2100 Denmark
Centre for Medical Genetics and Reproductive Medicine Gennet Prague 17000 Czech Republic
Centro de Investigación en Red de Enfermedades Raras Madrid 28029 Spain
Department of Clinical Pathology The University of Melbourne Melbourne 3010 Australia
Department of Genetics Portuguese Oncology Institute of Porto Porto 4200 072 Portugal
Department of Medical Genetics GHC Genetics Prague 11000 Czech Republic
Department of Medical Oncology University Hospital Vall d´Hebron Barcelona 08035 Spain
Department of Molecular Genetics National Institute of Oncology Budapest 1122 Hungary
Division of Clinical Genetics Department of Laboratory Medicine Lund University Lund SE 22100 Sweden
Fundación Pública Galega Medicina Xenómica SERGAS Santiago de Compostela 15706 Spain
Genome Diagnostics Program IFOM the FIRC Institute for Molecular Oncology Milan 20139 Italy
Hereditary Cancer Group Vall d'Hebron Institute of Oncology Barcelona 08035 Spain
Inserm U900 Institut Curie PSL University Paris F 75005 France
Institute of Medical Sciences University of Rzeszow Rzeszow 35 310 Poland
Instituto de Investigación Sanitaria de Santiago de Compostela Santiago de Compostela 15706 Spain
Mines ParisTech Fontainebleau F 77300 France
National Center of Pathology Vilnius University Hospital Santaros Klinikos Vilnius 08410 Lithuania
Service de Génétique Institut Curie Inserm U830 Paris Descartes University Paris F 75005 France
Zobrazit více v PubMed
Meetei A.R., Medhurst A.L., Ling C., Xue Y., Singh T.R., Bier P., Steltenpool J., Stone S., Dokal I., Mathew C.G., et al. A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M. Nat. Genet. 2005;37:958–963. doi: 10.1038/ng1626. PubMed DOI PMC
Bogliolo M., Bluteau D., Lespinasse J., Pujol R., Vasquez N., d’Enghien C.D., Stoppa-Lyonnet D., Leblanc T., Soulier J., Surralles J. Biallelic truncating FANCM mutations cause early-onset cancer but not Fanconi anemia. Genet. Med. 2018;20:458–463. doi: 10.1038/gim.2017.124. PubMed DOI
Catucci I., Osorio A., Arver B., Neidhardt G., Bogliolo M., Zanardi F., Riboni M., Minardi S., Pujol R., Azzollini J., et al. Individuals with FANCM biallelic mutations do not develop Fanconi anemia, but show risk for breast cancer, chemotherapy toxicity and may display chromosome fragility. Genet. Med. 2018;20:452–457. doi: 10.1038/gim.2017.123. PubMed DOI
Lek M., Karczewski K.J., Minikel E.V., Samocha K.E., Banks E., Fennell T., O’Donnell-Luria A.H., Ware J.S., Hill A.J., Cummings B.B., et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–291. doi: 10.1038/nature19057. PubMed DOI PMC
Kiiski J.I., Pelttari L.M., Khan S., Freysteinsdottir E.S., Reynisdottir I., Hart S.N., Shimelis H., Vilske S., Kallioniemi A., Schleutker J., et al. Exome sequencing identifies FANCM as a susceptibility gene for triple-negative breast cancer. Proc. Natl. Acad. Sci. USA. 2014;111:15172–15177. doi: 10.1073/pnas.1407909111. PubMed DOI PMC
Kiiski J.I., Fagerholm R., Tervasmaki A., Pelttari L.M., Khan S., Jamshidi M., Mantere T., Pylkas K., Bartek J., Bartkova J., et al. FANCM c.5101C>T mutation associates with breast cancer survival and treatment outcome. Int. J. Cancer. 2016;139:2760–2770. doi: 10.1002/ijc.30394. PubMed DOI PMC
Peterlongo P., Catucci I., Colombo M., Caleca L., Mucaki E., Bogliolo M., Marin M., Damiola F., Bernard L., Pensotti V., et al. FANCM c.5791C>T nonsense mutation (rs144567652) induces exon skipping, affects DNA repair activity and is a familial breast cancer risk factor. Hum. Mol. Genet. 2015;24:5345–5355. doi: 10.1093/hmg/ddv251. PubMed DOI PMC
Kiiski J.I., Tervasmaki A., Pelttari L.M., Khan S., Mantere T., Pylkas K., Mannermaa A., Tengstrom M., Kvist A., Borg A., et al. FANCM mutation c.5791C>T is a risk factor for triple-negative breast cancer in the Finnish population. Breast Cancer Res. Treat. 2017;166:217–226. doi: 10.1007/s10549-017-4388-0. PubMed DOI PMC
Neidhardt G., Hauke J., Ramser J., Gross E., Gehrig A., Muller C.R., Kahlert A.K., Hackmann K., Honisch E., Niederacher D., et al. Association Between Loss-of-Function Mutations Within the FANCM Gene and Early-Onset Familial Breast Cancer. JAMA Oncol. 2017;3:1245–1248. doi: 10.1001/jamaoncol.2016.5592. PubMed DOI PMC
Figlioli G., Bogliolo M., Catucci I., Caleca L., Lasheras S.V., Pujol R., Kiiski J.I., Muranen T.A., Barnes D.R., Dennis J., et al. The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer. npj Breast Cancer. 2019;5 doi: 10.1038/s41523-019-0127-5. PubMed DOI PMC
Shimelis H., LaDuca H., Hu C., Hart S.N., Na J., Thomas A., Akinhanmi M., Moore R.M., Brauch H., Cox A., et al. Triple-Negative Breast Cancer Risk Genes Identified by Multigene Hereditary Cancer Panel Testing. J. Natl. Cancer Inst. 2018;110:855–862. doi: 10.1093/jnci/djy106. PubMed DOI PMC
Spurdle A.B., Healey S., Devereau A., Hogervorst F.B., Monteiro A.N., Nathanson K.L., Radice P., Stoppa-Lyonnet D., Tavtigian S., Wappenschmidt B., et al. ENIGMA—Evidence-based network for the interpretation of germline mutant alleles: An international initiative to evaluate risk and clinical significance associated with sequence variation in BRCA1 and BRCA2 genes. Hum. Mutat. 2012;33:2–7. doi: 10.1002/humu.21628. PubMed DOI PMC
Schubert S., van Luttikhuizen J.L., Auber B., Schmidt G., Hofmann W., Penkert J., Davenport C.F., Hille-Betz U., Wendeburg L., Bublitz J., et al. The identification of pathogenic variants in BRCA1/2 negative, high risk, hereditary breast and/or ovarian cancer patients: High frequency of FANCM pathogenic variants. Int. J. Cancer. 2019;144:2683–2694. doi: 10.1002/ijc.31992. PubMed DOI
Janavicius R., Rudaitis V., Feng B.J., Ozolina S., Griskevicius L., Goldgar D., Tihomirova L. Haplotype analysis and ancient origin of the BRCA1 c.4035delA Baltic founder mutation. Eur. J. Med. Genet. 2013;56:125–130. doi: 10.1016/j.ejmg.2012.12.007. PubMed DOI
Janavicius R., Rudaitis V., Mickys U., Elsakov P., Griskevicius L. Comprehensive BRCA1 and BRCA2 mutational profile in Lithuania. Cancer Genet. 2014;207:195–205. doi: 10.1016/j.cancergen.2014.05.002. PubMed DOI