Methylene blue administration in patients with refractory distributive shock - a retrospective study

. 2020 Feb 04 ; 10 (1) : 1828. [epub] 20200204

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32020043
Odkazy

PubMed 32020043
PubMed Central PMC7000741
DOI 10.1038/s41598-020-58828-4
PII: 10.1038/s41598-020-58828-4
Knihovny.cz E-zdroje

Hemodynamic effectiveness of methylene blue (MB) was tested in patients with refractory distributive shock. A retrospective analysis of 20 critically-ill patients who developed refractory shock was performed. Patients were divided into two study groups as responders with positive hemodynamic response to MB administration (defined as 10% decrease of norepinephrine dose) and non-responders. Hemodynamic, outcome data and baseline tissue hypoxia-related parameters including ratio of central venous-to-arterial carbon dioxide tension to arterio-venous oxygen content (P(v-a)CO2/C(a-v)O2) were compared between the groups. There were 9 (45%) responders and 11 (55%) non-responders to single bolus of MB administration. Dose of MB did not differ between responders and non-responders (1.3 ± 0.5 vs. 1.3 ± 0.4 mg/kg respectively, P = 0.979). MB responders had lower baseline P(v-a) CO2/C(a-v)O2 (1.79 ± 0.73 vs. 3.24 ± 1.18, P = 0.007), higher pH (7.26 ± 0.11 vs. 7.16 ± 0.10, P = 0.037) and lower lactate levels at 12 hours post MB administration (3.4 ± 2.7 vs. 9.9 ± 2.2 mmol/L, P = 0.002) compared to non-responders. Methylene blue represents a non-adrenergic vasopressor with only limited effectiveness in patients with refractory distributive shock. Profound tissue hypoxia with high degree of anaerobic metabolism was associated with the loss of hemodynamic responsiveness to its administration.

Zobrazit více v PubMed

De Backer D, et al. SOAP II Investigators. Comparison of dopamine and norepinephrine in the treatment of shock. N. Engl. J. Med. 2010;362(9):779–89. doi: 10.1056/NEJMoa0907118. PubMed DOI

Bassi, E., Park, M., Azevedo, L. C. Therapeutic strategies for high-dose vasopressor-dependent shock. Crit. Care. Res. Pract. 654708 (2013). PubMed PMC

Jenkins CR, Gomersall CD, Leung P, Joynt GM. Outcome of patients receiving high dose vasopressor therapy: a retrospective cohort study. Anaesth. Intensive Care. 2009;37(2):286–9. doi: 10.1177/0310057X0903700212. PubMed DOI

Belletti A, et al. Non-Adrenergic Vasopressors in Patients with or at Risk for Vasodilatory Shock. A Systematic Review and Meta-Analysis of Randomized Trials. PLoS One. 2015;10(11):e0142605. doi: 10.1371/journal.pone.0142605. PubMed DOI PMC

Khanna A, et al. Angiotensin II for the Treatment of Vasodilatory Shock. N. Engl. J. Med. 2017;377(5):419–430. doi: 10.1056/NEJMoa1704154. PubMed DOI

Sacha GL, et al. Predictors of response to fixed-dose vasopressin in adult patients with septic shock. Ann. Intensive Care. 2018;8(1):35. doi: 10.1186/s13613-018-0379-5. PubMed DOI PMC

Avni T, et al. Vasopressors for the Treatment of Septic Shock: Systematic Review and Meta-Analysis. PLoS One. 2015;10(8):e0129305. doi: 10.1371/journal.pone.0129305. PubMed DOI PMC

Jang DH, Nelson LS, Hoffman RS. Methylene blue for distributive shock: a potential new use of an old antidote. J. Med. Toxicol. 2013;9(3):242–9. doi: 10.1007/s13181-013-0298-7. PubMed DOI PMC

Park BK, et al. The effects of methylene blue on hemodynamic parameters and cytokine levels in refractory septic shock. Korean J. Intern. Med. 2005;20(2):123–8. doi: 10.3904/kjim.2005.20.2.123. PubMed DOI PMC

Rhodes A, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017;43(3):304–377. doi: 10.1007/s00134-017-4683-6. PubMed DOI

Mehaffey JH, et al. Methylene Blue for Vasoplegic Syndrome After Cardiac Operation: Early Administration Improves Survival. Ann. Thorac. Surg. 2017;104(1):36–41. doi: 10.1016/j.athoracsur.2017.02.057. PubMed DOI PMC

Huang YC. Monitoring oxygen delivery in the critically ill. Chest. 2005;128(5 Suppl 2):554S–560S. doi: 10.1378/chest.128.5_suppl_2.554S. PubMed DOI

O’Connor E, Fraser JF. The interpretation of perioperative lactate abnormalities in patients undergoing cardiac surgery. Anaesth. Intensive Care. 2012;40(4):598–603. doi: 10.1177/0310057X1204000404. PubMed DOI

Mallat J, Vallet B. Difference in venous-arterial carbon dioxide in septic shock. Minerva Anestesiol. 2015;81(4):419–25. PubMed

Mallat J, et al. Ratios of central venous-to-arterial carbon dioxide content or tension to arteriovenous oxygen content are better markers of global anaerobic metabolism than lactate in septic shock patients. Ann. Intensive Care. 2016;6(1):10. doi: 10.1186/s13613-016-0110-3. PubMed DOI PMC

He HW, Liu DW, Long Y, Wang XT. High central venous-to-arterial CO2 difference/arterial-central venous O2 difference ratio is associated with poor lactate clearance in septic patients after resuscitation. J. Crit. Care. 2016;31(1):76–81. doi: 10.1016/j.jcrc.2015.10.017. PubMed DOI

Levy B, et al. Vascular hyporesponsiveness to vasopressors in septic shock: from bench to bedside. Intensive Care Med. 2010;36(12):2019–29. doi: 10.1007/s00134-010-2045-8. PubMed DOI

Vadstrup S, et al. Correlation between severity of septic conditions and circulating levels of ionized calcium. Intensive Care Med. 1989;15(5):329–30. PubMed

Alegre M, Vincent JL. Dopamine dependence in hypocalcemic patients. Intensive Care Med. 1990;16(7):463–5. doi: 10.1007/BF01711228. PubMed DOI

Forsythe RM, et al. Parenteral calcium for intensive care unit patients. Cochrane Database Syst Rev. 2008;8(4):CD006163. PubMed

Zaloga GP, et al. Low dose calcium administration increases mortality during septic peritonitis in rats. Circ Shock. 1992;37(3):226–9. PubMed

Goluboff N, Wheaton R. Methylene blue induced cyanosis and acute hemolytic anemia complicating the treatment of methemoglobinemia. J. Pediatr. 1961;58:86–9. doi: 10.1016/S0022-3476(61)80064-4. PubMed DOI

Weingartner R, et al. Blockade of the action of nitric oxide in human septic shock increases systemic vascular resistance and has detrimental effects on pulmonary function after a short infusion of methylene blue. Braz. J. Med. Biol. Res. 1999;32(12):1505–13. doi: 10.1590/S0100-879X1999001200009. PubMed DOI

Héritier Barras AC, Walder B, Seeck M. Serotonin syndrome following Methylene Blue infusion: a rare complication of antidepressant therapy. J. Neurol. Neurosurg. Psychiatry. 2010;81(12):1412–3. doi: 10.1136/jnnp.2009.172221. PubMed DOI

Landry DW, Oliver JA. The pathogenesis of vasodilatory shock. N Engl J Med. 2001;23;345(8):588–95. doi: 10.1056/NEJMra002709. PubMed DOI

Laffey JG, Boylan JF, Cheng DC. The systemic inflammatory response to cardiac surgery: implications for the anesthesiologist. Anesthesiology. 2002;97(1):215–52. doi: 10.1097/00000542-200207000-00030. PubMed DOI

Hingorani AD, et al. Acute systemic inflammation impairs endothelium-dependent dilatation in humans. Circulation. 2000;102:994–9. doi: 10.1161/01.CIR.102.9.994. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...