Methylene blue administration in patients with refractory distributive shock - a retrospective study
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32020043
PubMed Central
PMC7000741
DOI
10.1038/s41598-020-58828-4
PII: 10.1038/s41598-020-58828-4
Knihovny.cz E-zdroje
- MeSH
- analýza přežití MeSH
- hemodynamika účinky léků MeSH
- krevní tlak účinky léků MeSH
- kyslík krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- methylenová modř terapeutické užití MeSH
- noradrenalin terapeutické užití MeSH
- retrospektivní studie MeSH
- senioři MeSH
- šok farmakoterapie mortalita MeSH
- vazokonstriktory terapeutické užití MeSH
- výsledek terapie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyslík MeSH
- methylenová modř MeSH
- noradrenalin MeSH
- vazokonstriktory MeSH
Hemodynamic effectiveness of methylene blue (MB) was tested in patients with refractory distributive shock. A retrospective analysis of 20 critically-ill patients who developed refractory shock was performed. Patients were divided into two study groups as responders with positive hemodynamic response to MB administration (defined as 10% decrease of norepinephrine dose) and non-responders. Hemodynamic, outcome data and baseline tissue hypoxia-related parameters including ratio of central venous-to-arterial carbon dioxide tension to arterio-venous oxygen content (P(v-a)CO2/C(a-v)O2) were compared between the groups. There were 9 (45%) responders and 11 (55%) non-responders to single bolus of MB administration. Dose of MB did not differ between responders and non-responders (1.3 ± 0.5 vs. 1.3 ± 0.4 mg/kg respectively, P = 0.979). MB responders had lower baseline P(v-a) CO2/C(a-v)O2 (1.79 ± 0.73 vs. 3.24 ± 1.18, P = 0.007), higher pH (7.26 ± 0.11 vs. 7.16 ± 0.10, P = 0.037) and lower lactate levels at 12 hours post MB administration (3.4 ± 2.7 vs. 9.9 ± 2.2 mmol/L, P = 0.002) compared to non-responders. Methylene blue represents a non-adrenergic vasopressor with only limited effectiveness in patients with refractory distributive shock. Profound tissue hypoxia with high degree of anaerobic metabolism was associated with the loss of hemodynamic responsiveness to its administration.
Zobrazit více v PubMed
De Backer D, et al. SOAP II Investigators. Comparison of dopamine and norepinephrine in the treatment of shock. N. Engl. J. Med. 2010;362(9):779–89. doi: 10.1056/NEJMoa0907118. PubMed DOI
Bassi, E., Park, M., Azevedo, L. C. Therapeutic strategies for high-dose vasopressor-dependent shock. Crit. Care. Res. Pract. 654708 (2013). PubMed PMC
Jenkins CR, Gomersall CD, Leung P, Joynt GM. Outcome of patients receiving high dose vasopressor therapy: a retrospective cohort study. Anaesth. Intensive Care. 2009;37(2):286–9. doi: 10.1177/0310057X0903700212. PubMed DOI
Belletti A, et al. Non-Adrenergic Vasopressors in Patients with or at Risk for Vasodilatory Shock. A Systematic Review and Meta-Analysis of Randomized Trials. PLoS One. 2015;10(11):e0142605. doi: 10.1371/journal.pone.0142605. PubMed DOI PMC
Khanna A, et al. Angiotensin II for the Treatment of Vasodilatory Shock. N. Engl. J. Med. 2017;377(5):419–430. doi: 10.1056/NEJMoa1704154. PubMed DOI
Sacha GL, et al. Predictors of response to fixed-dose vasopressin in adult patients with septic shock. Ann. Intensive Care. 2018;8(1):35. doi: 10.1186/s13613-018-0379-5. PubMed DOI PMC
Avni T, et al. Vasopressors for the Treatment of Septic Shock: Systematic Review and Meta-Analysis. PLoS One. 2015;10(8):e0129305. doi: 10.1371/journal.pone.0129305. PubMed DOI PMC
Jang DH, Nelson LS, Hoffman RS. Methylene blue for distributive shock: a potential new use of an old antidote. J. Med. Toxicol. 2013;9(3):242–9. doi: 10.1007/s13181-013-0298-7. PubMed DOI PMC
Park BK, et al. The effects of methylene blue on hemodynamic parameters and cytokine levels in refractory septic shock. Korean J. Intern. Med. 2005;20(2):123–8. doi: 10.3904/kjim.2005.20.2.123. PubMed DOI PMC
Rhodes A, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017;43(3):304–377. doi: 10.1007/s00134-017-4683-6. PubMed DOI
Mehaffey JH, et al. Methylene Blue for Vasoplegic Syndrome After Cardiac Operation: Early Administration Improves Survival. Ann. Thorac. Surg. 2017;104(1):36–41. doi: 10.1016/j.athoracsur.2017.02.057. PubMed DOI PMC
Huang YC. Monitoring oxygen delivery in the critically ill. Chest. 2005;128(5 Suppl 2):554S–560S. doi: 10.1378/chest.128.5_suppl_2.554S. PubMed DOI
O’Connor E, Fraser JF. The interpretation of perioperative lactate abnormalities in patients undergoing cardiac surgery. Anaesth. Intensive Care. 2012;40(4):598–603. doi: 10.1177/0310057X1204000404. PubMed DOI
Mallat J, Vallet B. Difference in venous-arterial carbon dioxide in septic shock. Minerva Anestesiol. 2015;81(4):419–25. PubMed
Mallat J, et al. Ratios of central venous-to-arterial carbon dioxide content or tension to arteriovenous oxygen content are better markers of global anaerobic metabolism than lactate in septic shock patients. Ann. Intensive Care. 2016;6(1):10. doi: 10.1186/s13613-016-0110-3. PubMed DOI PMC
He HW, Liu DW, Long Y, Wang XT. High central venous-to-arterial CO2 difference/arterial-central venous O2 difference ratio is associated with poor lactate clearance in septic patients after resuscitation. J. Crit. Care. 2016;31(1):76–81. doi: 10.1016/j.jcrc.2015.10.017. PubMed DOI
Levy B, et al. Vascular hyporesponsiveness to vasopressors in septic shock: from bench to bedside. Intensive Care Med. 2010;36(12):2019–29. doi: 10.1007/s00134-010-2045-8. PubMed DOI
Vadstrup S, et al. Correlation between severity of septic conditions and circulating levels of ionized calcium. Intensive Care Med. 1989;15(5):329–30. PubMed
Alegre M, Vincent JL. Dopamine dependence in hypocalcemic patients. Intensive Care Med. 1990;16(7):463–5. doi: 10.1007/BF01711228. PubMed DOI
Forsythe RM, et al. Parenteral calcium for intensive care unit patients. Cochrane Database Syst Rev. 2008;8(4):CD006163. PubMed
Zaloga GP, et al. Low dose calcium administration increases mortality during septic peritonitis in rats. Circ Shock. 1992;37(3):226–9. PubMed
Goluboff N, Wheaton R. Methylene blue induced cyanosis and acute hemolytic anemia complicating the treatment of methemoglobinemia. J. Pediatr. 1961;58:86–9. doi: 10.1016/S0022-3476(61)80064-4. PubMed DOI
Weingartner R, et al. Blockade of the action of nitric oxide in human septic shock increases systemic vascular resistance and has detrimental effects on pulmonary function after a short infusion of methylene blue. Braz. J. Med. Biol. Res. 1999;32(12):1505–13. doi: 10.1590/S0100-879X1999001200009. PubMed DOI
Héritier Barras AC, Walder B, Seeck M. Serotonin syndrome following Methylene Blue infusion: a rare complication of antidepressant therapy. J. Neurol. Neurosurg. Psychiatry. 2010;81(12):1412–3. doi: 10.1136/jnnp.2009.172221. PubMed DOI
Landry DW, Oliver JA. The pathogenesis of vasodilatory shock. N Engl J Med. 2001;23;345(8):588–95. doi: 10.1056/NEJMra002709. PubMed DOI
Laffey JG, Boylan JF, Cheng DC. The systemic inflammatory response to cardiac surgery: implications for the anesthesiologist. Anesthesiology. 2002;97(1):215–52. doi: 10.1097/00000542-200207000-00030. PubMed DOI
Hingorani AD, et al. Acute systemic inflammation impairs endothelium-dependent dilatation in humans. Circulation. 2000;102:994–9. doi: 10.1161/01.CIR.102.9.994. PubMed DOI