Measuring the Microscopic Structures of Human Dental Enamel Can Predict Caries Experience

. 2020 Feb 02 ; 10 (1) : . [epub] 20200202

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32024259

OBJECTIVES: The hierarchical structure of enamel gives insight on the properties of enamel and can influence its strength and ultimately caries experience. Currently, past caries experience is quantified using the decayed, missing, filled teeth/decayed, missing, filled surface (DMFT/DMFS for permanent teeth; dmft/dmfs for primary teeth), or international caries detection and assessment system (ICDAS) scores. By analyzing the structure of enamel, a new measurement can be utilized clinically to predict susceptibility to future caries experience based on a patient's individual's biomarkers. The purpose of this study was to test the hypothesis that number of prisms by square millimeter in enamel and average gap distance between prisms and interprismatic areas, influence caries experience through genetic variation of the genes involved in enamel formation. MATERIALS AND METHODS: Scanning electron microscopy (SEM) images of enamel from primary teeth were used to measure (i) number of prisms by square millimeter and interprismatic spaces, (ii) prism density, and (iii) gap distances between prisms in the enamel samples. The measurements were tested to explore a genetic association with variants of selected genes and correlations with caries experience based on the individual's DMFT+ dmft score and enamel microhardness at baseline, after an artificial lesion was created and after the artificial lesion was treated with fluoride. RESULTS: Associations were found between variants of genes including ameloblastin, amelogenin, enamelin, tuftelin, tuftelin interactive protein 11, beta defensin 1, matrix metallopeptidase 20 and enamel structure variables measured (number of prisms by square millimeter in enamel and average gap distance between prisms and interprismatic areas). Significant correlations were found between caries experience and microhardness and enamel structure. Negative correlations were found between number of prisms by square millimeter and high caries experience (r value= -0.71), gap distance between prisms and the enamel microhardness after an artificial lesion was created (r value= -0.70), and gap distance between prisms and the enamel microhardness after an artificial lesion was created and then treated with fluoride (r value= -0.81). There was a positive correlation between number of prisms by square millimeter and prism density of the enamel (r value = 0.82). CONCLUSIONS: Our data support that genetic variation may impact enamel formation, and therefore influence susceptibility to dental caries and future caries experience. CLINICAL RELEVANCE: The evaluation of enamel structure that may impact caries experience allows for hypothesizing that the identification of individuals at higher risk for dental caries and implementation of personalized preventative treatments may one day become a reality.

Zobrazit více v PubMed

Bayram M., Deeley K., Reis M.F., Trombetta V.M., Ruff T.D., Sencak R.C., Hummel M., Dizak P.M., Washam K., Romanos H.F., et al. Genetic influences on dental enamel that impact caries differ between the primary and permanent dentitions. Eur. J. Oral Sci. 2015;123:327–334. doi: 10.1111/eos.12204. PubMed DOI PMC

Shimizu T., Ho B., Deeley K., Briseño-Ruiz J., Faraco I.M., Schupack B.I., Brancher J.A., Pecharki G.D., Küchler E.C., Tannure P.N., et al. Enamel Formation Genes Influence Enamel Microhardness Before and After Cariogenic Challenge. PLoS ONE. 2012;7:e45022. doi: 10.1371/journal.pone.0045022. PubMed DOI PMC

Hu Y., Smith C.E., Richardson A.S., Bartlett J.D., Hu J., Simmer J.P. MMP20, KLK4, and MMP20/KLK4 double null mice define roles for matrix proteases during dental enamel formation. Mol. Genet. Genom. Med. 2016;4:178–196. doi: 10.1002/mgg3.194. PubMed DOI PMC

Prakash S.K., Gibson C.W., Wright J.T., Boyd C., Cormier T., Sierra R., Li Y., Abrams W.R., Aragon M.A., Yuan Z.A., et al. Tooth Enamel Defects in Mice with a Deletion at the Arhgap6/AmelX Locus. Calcif. Tissue Int. 2005;77:23–29. doi: 10.1007/s00223-004-1213-7. PubMed DOI

Vieira A.R., Modesto A., Marazita M.L. Caries: Review of human genetics research. Caries Res. 2014;48:491–506. doi: 10.1159/000358333. PubMed DOI PMC

Uhlen M.-M., Stenhagen K.R., Dizak P.M., Holme B., Mulic A., Tveit A.B., Vieira A.R. Genetic variation may explain why females are less susceptible to dental erosion. Eur. J. Oral Sci. 2016;124:426–432. doi: 10.1111/eos.12297. PubMed DOI

Vieira A.R., Gibson C.W., Deeley K., Xue H., Li Y. Weaker Dental Enamel Explains Dental Decay. PLoS ONE. 2015;10:e0124236. doi: 10.1371/journal.pone.0124236. PubMed DOI PMC

Nibali L., Di Iorio A., Vieira A.R., Tu Y.-K. Host genetics role in the pathogenesis of periodontal disease and caries. J. Clin. Periodontol. 2017;44:S52–S78. doi: 10.1111/jcpe.12639. PubMed DOI

Cui F.-Z., Ge J. New observations of the hierarchical structure of human enamel, from nanoscale to microscale. J. Tissue Eng. Regen. Med. 2007;1:185–191. doi: 10.1002/term.21. PubMed DOI

Ter Pelkwijk A., Helderman W.V.P., Van Dijk J. Caries Experience in the Deciduous Dentition as Predictor for Caries in the Permanent Dentition. Caries Res. 1990;24:65–71. doi: 10.1159/000261241. PubMed DOI

Klein H., Palmer C.E. Studies on dental caries: A procedure for the recording and statistical processing of dental examination findings. J. Dent. Res. 1940;19:14. doi: 10.1177/00220345400190030401. DOI

Küchler E.C., Tannure P.N., Falagan-Lotsch P., Lopes T.S., Granjeiro J.M., Amorim L.M.F. Buccal cells DNA extraction to obtain high quality human genomic DNA suitable for polymorphism genotyping by PCR-RFLP and Real-Time PCR. J. Appl. Oral Sci. 2012;20:467–471. doi: 10.1590/S1678-77572012000400013. PubMed DOI PMC

Anjomshoaa I., Briseño-Ruiz J., Deeley K., Poletta F.A., Mereb J.C., Leite A.L., Barreta P.A.T.M., Silva T.L., Dizak P., Ruff T., et al. Aquaporin 5 Interacts with Fluoride and Possibly Protects against Caries. PLoS ONE. 2015;10:e0143068. doi: 10.1371/journal.pone.0143068. PubMed DOI PMC

Weber M.L., Hsin H.-Y., Kalay E., Brožková D.Š., Shimizu T., Bayram M., Deeley K., Küchler E.C., Forella J., Ruff T.D., et al. Role of estrogen related receptor beta (ESRRB) in DFN35B hearing impairment and dental decay. BMC Med. Genet. 2014;15:81. doi: 10.1186/1471-2350-15-81. PubMed DOI PMC

Felszeghy S., Módis L., Nemeth P., Nagy G., Zelles T., Agre P., Laurikkala J., Fejerskov O., Thesleff I., Nielsen S. Expression of aquaporin isoforms during human and mouse tooth development. Arch. Oral Boil. 2004;49:247–257. doi: 10.1016/j.archoralbio.2003.09.011. PubMed DOI

Shimizu T., Deeley K., Briseño-Ruiz J., Faraco I., Poletta F., Brancher J., Pecharki G., Küchler E., Tannure P., Lips A., et al. Fine-mapping of 5q12.1-13.3 unveils new genetic contributors to caries. Caries Res. 2013;47:273–283. doi: 10.1159/000346278. PubMed DOI PMC

Ferreira T., Rasband W. ImageJ User Guide—IJ 1.46r. National Institutes of Health. [(accessed on 31 January 2020)];2012 Available online: https://imagej.nih.gov/ij/docs/guide/146.html.

Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A.R., Bender D., Maller J., Sklar P., De Bakker P.I.W., Daly M.J., et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007;81:559–575. doi: 10.1086/519795. PubMed DOI PMC

Haworth S., Shungin D., Van Der Tas J.T., Vucić S., Medina-Gómez C., Yakimov V., Feenstra B., Shaffer J.R., Lee M.K., Standl M., et al. Consortium-based genome-wide meta-analysis for childhood dental caries traits. Hum. Mol. Genet. 2018;27:3113–3127. doi: 10.1093/hmg/ddy237. PubMed DOI PMC

E Tabangin M., Woo J.G., Martin L.J. The effect of minor allele frequency on the likelihood of obtaining false positives. BMC Proc. 2009;3:S41. doi: 10.1186/1753-6561-3-S7-S41. PubMed DOI PMC

Shellis R. Relationship between human enamel structure and the formation of caries-like lesions in vitro. Arch. Oral Boil. 1984;29:975–981. doi: 10.1016/0003-9969(84)90144-4. PubMed DOI

Shellis R. A scanning electron-microscopic study of solubility variations in human enamel and dentine. Arch. Oral Boil. 1996;41:473–484. doi: 10.1016/0003-9969(96)00140-9. PubMed DOI

Shellis R., Poole D. Modified procedure for the quantitative estimation of pore volumes in carious dental enamel by polarizing microscopy. Arch. Oral Boil. 1985;30:865–868. doi: 10.1016/0003-9969(85)90146-3. PubMed DOI

Yeni Y.N., Yerramshetty J., Akkus O., Pechey C., Les C.M. Effect of Fixation and Embedding on Raman Spectroscopic Analysis of Bone Tissue. Calcif. Tissue Int. 2006;78:363–371. doi: 10.1007/s00223-005-0301-7. PubMed DOI

He L.H., Swain M.V. Influence of environment on the mechanical behavior of mature human enamel. Biomater. 2007;28:4512–4520. doi: 10.1016/j.biomaterials.2007.06.020. PubMed DOI

Koch G., Poulsen S., Espelid I., Haubek D. Pediatric Dentistry: A Clinical Approach. 3rd ed. John Wiley & Sons; New York, NY, USA: 2017.

Lussi A., Kohler N., Zero D., Schaffner M., Megert B. A comparison of the erosive potential of different beverages in primary and permanent teeth using an in vitro model. Eur. J. Oral Sci. 2000;108:110–114. doi: 10.1034/j.1600-0722.2000.90741.x. PubMed DOI

Lo Giudice G., Lo Giudicea R., Mataresea G., Isolaa G., Cicciùb M., Terranovaa A., Palaiac G., Romeo U. Valutazione dei sistemi di ingrandimento in odontoiatria conservative e restaurativa. Studio in vitro. Dent. Cadmos. 2015;83:296–305. doi: 10.1016/S0011-8524(15)30036-2. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...