Comparison and Validation of Different Magnetic Force Microscopy Calibration Schemes
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
15SIB06
European Metrology Programme for Innovation and Research
Braunschweig International Graduate School of Metrology B-IGSM
1952
DFG Research Training Group
PubMed
32037728
DOI
10.1002/smll.201906144
Knihovny.cz E-zdroje
- Klíčová slova
- Hall nanosensors, calibration, magnetic force microscopy (MFM), magnetic probes, nanoscale,
- Publikační typ
- časopisecké články MeSH
The future of consumer electronics depends on the capability to reliably fabricate nanostructures with given physical properties. Therefore, techniques to characterize materials and devices with nanoscale resolution are crucial. Among these is magnetic force microscopy (MFM), which transduces the magnetic force between the sample and a magnetic oscillating probe into a phase shift, enabling the locally resolved study of magnetic field patterns down to 10 nm. Here, the progress done toward making quantitative MFM a common tool in nanocharacterization laboratories is shown. The reliability and ease of use of the calibration method based on a magnetic reference sample, with a calculable stray field, and a deconvolution algorithm is demonstrated. This is achieved by comparing two calibration approaches combined with numerical modeling as a quantitative link: measuring the probe's effect on the voltage signal when scanning above a nanosized graphene Hall sensor, and recording the MFM phase shift signal when the probe scans across magnetic fields produced by metallic microcoils. Furthermore, in the case of the deconvolution algorithm, it is shown how it can be applied using the open-source software package Gwyddion. The estimated magnetic dipole approximation for the most common probes currently in the market is also reported.
Department of Nanometrology Czech Metrology Institute Okružní 31 638 00 Brno Czech Republic
Istituto Nazionale di Ricerca Metrologica Torino 1 10135 Italy
Leibniz IFW Dresden Helmholtzstr 20 01069 Dresden Germany
National Physical Laboratory Hampton Road Teddington TW11 0LW UK
Physikalisch Technische Bundesanstalt Braunschweig D 38116 Germany
Zobrazit více v PubMed
O. Kazakova, R. Puttock, C. Barton, H. Corte-León, M. Jaafar, V. Neu, A. Asenjo, J. Appl. Phys. 2019, 125, 060901.
X. K. Hu, G. Dai, S. Sievers, V. Neu, H. W. Schumacher, Conf. on Precision Electromagnetic Measurements (CPEM 2018), IEEE 2018, pp. 1-2, https://doi.org/10.1109/CPEM.2018.8501050.
S. McVitie, R. P. Ferrier, J. Scott, G. S. White, A. Gallagher, J. Appl. Phys. 2001, 89, 3656.
S. Signoretti, C. Beeli, S.-H. Liou, J. Magn. Magn. Mater. 2004, 272, 2167.
H. Corte-León, L. A. Rodríguez, M. Pancaldi, C. Gatel, D. Cox, E. Snoeck, V. Antonov, P. Vavassori, O. Kazakova, Nanoscale 2019, 11, 4478.
M. Jaafar, A. Asenjo, M. Vázquez, IEEE Trans. Nanotechnol. 2008, 7, 245.
H. Corte-León, A. F. Scarioni, R. Mansell, P. Krzysteczko, D. Cox, D. McGrouther, S. McVitie, R. Cowburn, H. W. Schumacher, V. Antonov, O. Kazakova, AIP Adv. 2017, 7, 056808.
M. Seifert, I. Knittel, U. Hartmann, L. Schultz, V. Neu, J. Phys. D: Appl. Phys. 2012, 45, 175001.
F. Wolny, T. Mühl, U. Weissker, K. Lipert, J. Schumann, A. Leonhardt, B. Büchner, Nanotechnology 2010, 21, 435501.
V. Panchal, H. Corte-León, B. Gribkov, L. A. Rodriguez, E. Snoeck, A. Manzin, E. Simonetto, S. Vock, V. Neu, O. Kazakova, Sci. Rep. 2017, 7, 7224.
T. Kebe, A. Carl, J. Appl. Phys. 2004, 95, 775.
J. Lohau, S. Kirsch, A. Carl, G. Dumpich, E. F. Wassermann, J. Appl. Phys. 1999, 86, 3410.
H. J. Hug, B. Stiefel, P. J. a. van Schendel, a. Moser, R. Hofer, S. Martin, H.-J. Güntherodt, S. Porthun, L. Abelmann, J. C. Lodder, G. Bochi, R. C. O'Handley, J. Appl. Phys. 1998, 83, 5609.
D. Nečas, P. Klapetek, V. Neu, M. Havlíček, R. Puttock, O. Kazakova, X. Hu, L. Zajíčková, Sci. Rep. 2019, 9, 3880.
D. Nečas, P. Klapetek, Open Phys. 2012, 10, 181.
NTI/1_19_0193. Nanomanufacturing - Key Control Charact. - Part 9-1 Nanoscale stray Magn. F. Meas. Magn. force Microsc. 2019.
R. K. Rajkumar, A. Asenjo, V. Panchal, A. Manzin, Ó. Iglesias-Freire, O. Kazakova, J. Appl. Phys. 2014, 115, 172606.
V. Panchal, O. Iglesias-Freire, A. Lartsev, R. Yakimova, A. Asenjo, O. Kazakova, IEEE Trans. Magn. 2013, 49, 3520.
L. O. Nyakiti, V. D. Wheeler, N. Y. Garces, R. L. Myers-Ward, C. R. Eddy, D. K. Gaskill, MRS Bull. 2012, 37, 1149.
S. Vock, C. Hengst, M. Wolf, K. Tschulik, M. Uhlemann, Z. Sasvári, D. Makarov, O. G. Schmidt, L. Schultz, V. Neu, Appl. Phys. Lett. 2014, 105, 172409.
R. K. Rajkumar, A. Manzin, D. C. Cox, S. R. P. Silva, A. Tzalenchuk, O. Kazakova, IEEE Trans. Magn. 2013, 49, 3445.
V. Nabaei, R. K. Rajkumar, A. Manzin, O. Kazakova, A. Tzalenchuk, J. Appl. Phys. 2013, 113, 064504.
A. Manzin, O. Bottauscio, J. Appl. Phys. 2012, 111, 07D125.
S. Vock, Z. Sasvari, C. Bran, F. Rhein, U. Wolff, N. S. Kiselev, A. N. Bogdanov, L. Schultz, O. Hellwig, V. Neu, IEEE Trans. Magn. 2011, 47, 2352.
SigMath, http://sig.math.tu-dresden.de/index.shtml (accessed: August 2019).
Clarity Deconvolution Library, http://cismm.web.unc.edu/resources/software-manuals/clarity-deconvolution-library (accessed: August 2019).
Magnetic force microscopy, http://gwyddion.net/documentation/user-guide-en/mfm.html (accessed: August 2019).