• This record comes from PubMed

Exodermis and Endodermis Respond to Nutrient Deficiency in Nutrient-Specific and Localized Manner

. 2020 Feb 06 ; 9 (2) : . [epub] 20200206

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
LO1417 Ministerstvo Školství, Mládeže a Tělovýchovy
1758218 GAUK

The exodermis is a common apoplastic barrier of the outer root cortex, with high environmentally-driven plasticity and a protective function. This study focused on the trade-off between the protective advantages provided by the exodermis and its disadvantageous reduction of cortical membrane surface area accessible by apoplastic route, thus limiting nutrient acquisition from the rhizosphere. We analysed the effect of nutrient deficiency (N, P, K, Mg, Ca, K, Fe) on exodermal and endodermal differentiation in maize. To differentiate systemic and localized effects, nutrient deficiencies were applied in three different approaches: to the root system as a whole, locally to discrete parts, or on one side of a single root. Our study showed that the establishment of the exodermis was enhanced in low-N and low-P plants, but delayed in low-K plants. The split-root cultivation proved that the effect is non-systemic, but locally coordinated for individual roots. Within a single root, localized deficiencies didn't result in an evenly differentiated exodermis, in contrast to other stress factors. The maturation of the endodermis responded in a similar way. In conclusion, N, P, and K deficiencies strongly modulated exodermal differentiation. The response was nutrient specific and integrated local signals of current nutrient availability from the rhizosphere.

See more in PubMed

Enstone D.E., Peterson C.A., Ma F. Root endodermis and exodermis: Structure, function, and responses to the environment. J. Plant Growth Regul. 2003;21:335–351. doi: 10.1007/s00344-003-0002-2. DOI

Perumalla C.J., Peterson C.A., Enstone D.E. A survey of angiosperm species to detect hypodermal Casparian bands. I. Roots with a uniseriate hypodermis and epidermis. Bot. J. Linn. Soc. 1990;103:93–112. doi: 10.1111/j.1095-8339.1990.tb00176.x. DOI

Peterson C.A., Perumalla C.J. A survey of angiosperm species to detect hypodermal Casparian bands. II. Roots with a multiseriate hypodermis or epidermis. Bot. J. Linn. Soc. 1990;103:113–125. doi: 10.1111/j.1095-8339.1990.tb00177.x. DOI

Meyer C.J., Seago J.L., Jr., Peterson C.A. Environmental effects on the maturation of the endodermis and multiseriate exodermis of Iris germanica roots. Ann. Bot. 2009;103:687–702. doi: 10.1093/aob/mcn255. PubMed DOI PMC

Tylová E., Pecková E., Blascheová Z., Soukup A. Casparian bands and suberin lamellae in exodermis of lateral roots: An important trait of roots system response to abiotic stress factors. Ann. Bot. 2017;120:71–85. doi: 10.1093/aob/mcx047. PubMed DOI PMC

Reinhardt D., Rost T. Salinity accelerates endodermal development and induces an exodermis in cotton seedling roots. Environ. Exp. Bot. 1995;35:563–574. doi: 10.1016/0098-8472(95)00015-1. DOI

Armstrong J., Armstrong W. Rice: Sulfide-induced barriers to root radial oxygen loss, Fe2+ and water uptake, and lateral root emergence. Ann. Bot. 2005;96:625–638. doi: 10.1093/aob/mci215. PubMed DOI PMC

Perumalla C., Peterson C.A. Deposition of Casparian bands and suberin lamellae in the exodermis and endodermis of young corn and onion roots. Can. J. Bot. 1986;64:1873–1878. doi: 10.1139/b86-248. DOI

Enstone D.E., Peterson C.A. Suberin lamella development in maize seedling roots grown in aerated and stagnant conditions. Plant Cell Environ. 2005;28:444–455. doi: 10.1111/j.1365-3040.2005.01286.x. DOI

Lux A., Martinka M., Vaculik M., White P.J. Root responses to cadmium in the rhizosphere: A review. J. Exp. Bot. 2011;62:21–37. doi: 10.1093/jxb/erq281. PubMed DOI

Lux A., Šottníková A., Opatrná J., Greger M. Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Physiol. Plant. 2004;120:537–545. doi: 10.1111/j.0031-9317.2004.0275.x. PubMed DOI

Redjala T., Zelko I., Sterckeman T., Legué V., Lux A. Relationship between root structure and root cadmium uptake in maize. Environ. Exp. Bot. 2011;71:241–248. doi: 10.1016/j.envexpbot.2010.12.010. DOI

Meyer C.J., Peterson C.A., Steudle E. Permeability of Iris germanica’s multiseriate exodermis to water, NaCl, and ethanol. J. Exp. Bot. 2011;62:1911–1926. doi: 10.1093/jxb/erq380. PubMed DOI PMC

Soukup A., Armstrong W., Schreiber L., Franke R., Votrubova O. Apoplastic barriers to radial oxygen loss and solute penetration: A chemical and functional comparison of the exodermis of two wetland species, Phragmites australis and Glyceria maxima. New Phytol. 2007;173:264–278. doi: 10.1111/j.1469-8137.2006.01907.x. PubMed DOI

Zimmermann H.M., Hartmann K., Schreiber L., Steudle E. Chemical composition of apoplastic transport barriers in relation to radial hydraulic conductivity of corn roots (Zea mays L.) Planta. 2000;210:302–311. doi: 10.1007/PL00008138. PubMed DOI

Zimmermann H.M., Steudle E. Apoplastic transport across young maize roots: Effect of the exodermis. Planta. 1998;206:7–19. doi: 10.1007/s004250050368. DOI

Geldner N. The endodermis. Annu. Rev. Plant Biol. 2013;64:531–558. doi: 10.1146/annurev-arplant-050312-120050. PubMed DOI

Caspary R. Bemerkung über die Schutzscheide und die Bildung des Stammes und der Wurzel. In: Pringsheim N., editor. Jahrbücher für Wissenschaftliche Botanik. Verlag von Wilh. Engelmann; Leipzig, Germany: 1865.

Soukup A., Tylová E. Apoplastic barriers: Their structure and function from a historical perspective. In: Sahi V., Baluška F., editors. Concepts in Cell Biology—History and Evolution. Plant Cell Monographs. Volume 23. Springer; Cham, Switzerland: 2018. pp. 155–183.

Schreiber L., Franke R., Hartmann K. Effects of NO3- deficiency and NaCl stress on suberin deposition in rhizo-and hypodermal (RHCW) and endodermal cell walls (ECW) of castor bean (Ricinus communis L.) roots. Plant Soil. 2005;269:333–339. doi: 10.1007/s11104-004-0721-6. DOI

Kamula S., Peterson C., Mayfield C. The plasmalemma surface area exposed to the soil solution is markedly reduced by maturation of the exodermis and death of the epidermis in onion roots. Plant Cell Environ. 1994;17:1183–1193. doi: 10.1111/j.1365-3040.1994.tb02016.x. DOI

Barberon M. The endodermis as a checkpoint for nutrients. New Phytol. 2017;213:1604–1610. doi: 10.1111/nph.14140. PubMed DOI

Barberon M., Vermeer J.E.M., De Bellis D., Wang P., Naseer S., Andersen T.G., Humbel B.M., Nawrath C., Takano J., Salt D.E. Adaptation of root function by nutrient-induced plasticity of endodermal differentiation. Cell. 2016;164:447–459. doi: 10.1016/j.cell.2015.12.021. PubMed DOI

Priestley J., Tupper-Carey R. Physiological studies in plant anatomy. New Phytol. 1922;21:210–229. doi: 10.1111/j.1469-8137.1922.tb07598.x. DOI

Barberon M., Geldner N. Radial transport of nutrients: The plant root as a polarized epithelium. Plant Physiol. 2014;166:528–537. doi: 10.1104/pp.114.246124. PubMed DOI PMC

Andersen T.G., Barberon M., Geldner N. Suberization—The second life of an endodermal cell. Curr. Opin. Plant Biol. 2015;28:9–15. doi: 10.1016/j.pbi.2015.08.004. PubMed DOI

Duan F., Giehl R.F.H., Geldner N., Salt D.E., von Wiren N. Root zone-specific localization of AMTs determines ammonium transport pathways and nitrogen allocation to shoots. PLoS Biol. 2018;16:e2006024. doi: 10.1371/journal.pbio.2006024. PubMed DOI PMC

Ranathunge K., Schreiber L., Bi Y.M., Rothstein S.J. Ammonium-induced architectural and anatomical changes with altered suberin and lignin levels significantly change water and solute permeabilities of rice (Oryza sativa L.) roots. Planta. 2016;243:231–249. doi: 10.1007/s00425-015-2406-1. PubMed DOI

Končalová H., Květ J., Pokorný J., Hauser V. Effect of flooding with sewage water on three wetland sedges. Wetl. Ecol. Manag. 1993;2:199–211. doi: 10.1007/BF00188154. DOI

Pozuelo J.M., Espelie K.E., Kolattukudy P. Magnesium deficiency results in increased suberization in endodermis and hypodermis of corn roots. Plant Physiol. 1984;74:256–260. doi: 10.1104/pp.74.2.256. PubMed DOI PMC

Armand T., Cullen M., Boiziot F., Li L., Fricke W. Cortex cell hydraulic conductivity, endodermal apoplastic barriers and root hydraulics change in barley (Hordeum vulgare L.) in response to a low supply of N and P. Ann. Bot. 2019;124:1091–1107. doi: 10.1093/aob/mcz113. PubMed DOI PMC

Drew M. Comparison of the effects of a localised supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytol. 1975;75:479–490. doi: 10.1111/j.1469-8137.1975.tb01409.x. DOI

Giehl R.F., von Wiren N. Root nutrient foraging. Plant Physiol. 2014;166:509–517. doi: 10.1104/pp.114.245225. PubMed DOI PMC

Lopez-Arredondo D.L., Leyva-Gonzalez M.A., Gonzalez-Morales S.I., Lopez-Bucio J., Herrera-Estrella L. Phosphate nutrition: Improving low-phosphate tolerance in crops. Annu. Rev. Plant Biol. 2014;65:95–123. doi: 10.1146/annurev-arplant-050213-035949. PubMed DOI

Karahara I., Ikeda A., Kondo T., Uetake Y. Development of the Casparian strip in primary roots of maize under salt stress. Planta. 2004;219:41–47. doi: 10.1007/s00425-004-1208-7. PubMed DOI

Priestley J.H. Further observations upon the mechanism of root pressure. New Phytol. 1922;21:41–47. doi: 10.1111/j.1469-8137.1922.tb07585.x. DOI

Hayward H., Spurr W.B. Effects of osmotic concentration of substrate on the entry of water into corn roots. Bot. Gaz. 1943;105:152–164. doi: 10.1086/335204. DOI

Carvajal M., Cooke D.T., Clarkson D.T. Responses of wheat plants to nutrient deprivation may involve the regulation of water-channel function. Planta. 1996;199:372–381. doi: 10.1007/BF00195729. DOI

Quintero J.M., Fournier J.M., Ramos J., Benlloch M. K+ status and ABA affect both exudation rate and hydraulic conductivity in sunflower roots. Physiol. Plant. 1998;102:279–284. doi: 10.1034/j.1399-3054.1998.1020216.x. DOI

Schraut D., Heilmeier H., Hartung W. Radial transport of water and abscisic acid (ABA) in roots of Zea mays under conditions of nutrient deficiency. J. Exp. Bot. 2005;56:879–886. doi: 10.1093/jxb/eri080. PubMed DOI

Coffey O., Bonfield R., Corre F., Althea Sirigiri J., Meng D., Fricke W. Root and cell hydraulic conductivity, apoplastic barriers and aquaporin gene expression in barley (Hordeum vulgare L.) grown with low supply of potassium. Ann. Bot. 2018;122:1131–1141. doi: 10.1093/aob/mcy110. PubMed DOI PMC

Krishnamurthy P., Ranathunge K., Nayak S., Schreiber L., Mathew M.K. Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L.) J. Exp. Bot. 2011;62:4215–4228. doi: 10.1093/jxb/err135. PubMed DOI PMC

Chapman K., Groot E., Nichol S., Rost T. Primary root growth and the pattern of root apical meristem organization are coupled. J. Plant Growth Regul. 2002;21:287–295. doi: 10.1007/s00344-002-0036-x. DOI

Reinhardt D., Rost T. On the correlation of primary root growth and tracheary element size and distance from the tip in cotton seedlings grown under salinity. Environ. Exp. Bot. 1995;35:575–588. doi: 10.1016/0098-8472(95)00018-6. DOI

Rost T.L., Baum S. On the correlation of primary root length, meristem size and protoxylem tracheary element position in pea seedlings. Am. J. Bot. 1988;75:414–424. doi: 10.1002/j.1537-2197.1988.tb13455.x. DOI

López-Bucio J., Cruz-Ramírez A., Herrera-Estrella L. The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol. 2003;6:280–287. doi: 10.1016/S1369-5266(03)00035-9. PubMed DOI

Schünmann P.H., Richardson A.E., Vickers C.E., Delhaize E. Promoter analysis of the barley Pht1; 1 phosphate transporter gene identifies regions controlling root expression and responsiveness to phosphate deprivation. Plant Physiol. 2004;136:4205–4214. doi: 10.1104/pp.104.045823. PubMed DOI PMC

Wang P., Calvo-Polanco M., Reyt G., Barberon M., Champeyroux C., Santoni V., Maurel C., Franke R.B., Ljung K., Novak O., et al. Surveillance of cell wall diffusion barrier integrity modulates water and solute transport in plants. Sci. Rep. 2019;9:4227. doi: 10.1038/s41598-019-40588-5. PubMed DOI PMC

Brady N.C., Weil R.R. The Nature and Properties of Soils. 13th ed. Pearson Education Inc. Prentice Hall; Upper Saddle River, NJ, USA: 2002. pp. 1–960.

Marschner H. Mineral Nutrition of Higher Plants. Academic Press Ltd.; London, UK: San Diego, CA, USA: 1995. pp. 1–889.

Colmer T., Bloom A. A comparison of NH4+ and NO3– net fluxes along roots of rice and maize. Plant Cell Environ. 1998;21:240–246. doi: 10.1046/j.1365-3040.1998.00261.x. DOI

Liu J., Han L., Chen F., Bao J., Zhang F., Mi G. Microarray analysis reveals early responsive genes possibly involved in localized nitrate stimulation of lateral root development in maize (Zea mays L.) Plant Sci. 2008;175:272–282. doi: 10.1016/j.plantsci.2008.04.009. DOI

Líška D., Martinka M., Kohanová J., Lux A. Asymmetrical development of root endodermis and exodermis in reaction to abiotic stresses. Ann. Bot. 2016;118:667–674. doi: 10.1093/aob/mcw047. PubMed DOI PMC

Lima J.E., Kojima S., Takahashi H., von Wirén N. Ammonium triggers lateral root branching in Arabidopsis in an AMMONIUM TRANSPORTER1; 3-dependent manner. Plant Cell. 2010;22:3621–3633. doi: 10.1105/tpc.110.076216. PubMed DOI PMC

Forde B.G. Nitrogen signalling pathways shaping root system architecture: An update. Curr. Opin. Plant Biol. 2014;21:30–36. doi: 10.1016/j.pbi.2014.06.004. PubMed DOI

Li J., Wu W.H., Wang Y. Potassium channel AKT1 is involved in the auxin-mediated root growth inhibition in Arabidopsis response to low K+ stress. J. Int. Plant Biol. 2017;59:895–909. doi: 10.1111/jipb.12575. PubMed DOI

Teyker R.H., Jackson W.A., Volk R.J., Moll R.H. Exogenous 15NO3− influx and endogenous 14NO3− efflux by two maize (Zea mays L.) inbreds during nitrogen deprivation. Plant Physiol. 1988;86:778–781. doi: 10.1104/pp.86.3.778. PubMed DOI PMC

Lee R., Clarkson D. Nitrogen-13 studies of nitrate fluxes in barley roots: I. Compartmental analysis from measurements of 13N efflux. J. Exp. Bot. 1986;37:1753–1767. doi: 10.1093/jxb/37.12.1753. DOI

Elliott G.C., Lynch J., Läuchli A. Influx and efflux of P in roots of intact maize plants: Double-labeling with 32P and 33P. Plant Physiol. 1984;76:336–341. doi: 10.1104/pp.76.2.336. PubMed DOI PMC

Brophy L.S., Heichel G. Nitrogen release from roots of alfalfa and soybean grown in sand culture. Plant Soil. 1989;116:77–84. doi: 10.1007/BF02327259. DOI

Kanno S., Arrighi J.-F., Chiarenza S., Bayle V., Berthomé R., Péret B., Javot H., Delannoy E., Marin E., Nakanishi T.M. A novel role for the root cap in phosphate uptake and homeostasis. eLife. 2016;5:e14577. doi: 10.7554/eLife.14577. PubMed DOI PMC

Sánchez-Calderón L., López-Bucio J., Chacón-López A., Cruz-Ramírez A., Nieto-Jacobo F., Dubrovsky J.G., Herrera-Estrella L. Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant Cell Physiol. 2005;46:174–184. doi: 10.1093/pcp/pci011. PubMed DOI

Ferrol N., Azcon-Aguilar C., Perez-Tienda J. Review: Arbuscular mycorrhizas as key players in sustainable plant phosphorus acquisition: An overview on the mechanisms involved. Plant Sci. 2019;280:441–447. doi: 10.1016/j.plantsci.2018.11.011. PubMed DOI

Garcia K., Zimmermann S.D. The role of mycorrhizal associations in plant potassium nutrition. Front. Plant Sci. 2014;5:337. doi: 10.3389/fpls.2014.00337. PubMed DOI PMC

Gruber B.D., Giehl R.F., Friedel S., von Wiren N. Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol. 2013;163:161–179. doi: 10.1104/pp.113.218453. PubMed DOI PMC

Kellermeier F., Chardon F., Amtmann A. Natural variation of Arabidopsis root architecture reveals complementing adaptive strategies to potassium starvation. Plant Physiol. 2013;161:1421–1432. doi: 10.1104/pp.112.211144. PubMed DOI PMC

Wang Y., Wu W.-H. Potassium transport and signaling in higher plants. Annu. Rev. Plant Biol. 2013;64:451–476. doi: 10.1146/annurev-arplant-050312-120153. PubMed DOI

Baxter I., Hosmani P.S., Rus A., Lahner B., Borevitz J.O., Muthukumar B., Mickelbart M.V., Schreiber L., Franke R.B., Salt D.E. Root suberin forms an extracellular barrier that affects water relations and mineral nutrition in Arabidopsis. PLoS Genet. 2009;5:e1000492. doi: 10.1371/journal.pgen.1000492. PubMed DOI PMC

Pfister A., Barberon M., Alassimone J., Kalmbach L., Lee Y., Vermeer J.E., Yamazaki M., Li G., Maurel C., Takano J. A receptor-like kinase mutant with absent endodermal diffusion barrier displays selective nutrient homeostasis defects. eLife. 2014;3:e03115. doi: 10.7554/eLife.03115. PubMed DOI PMC

Andersen T.G., Naseer S., Ursache R., Wybouw B., Smet W., De Rybel B., Vermeer J.E.M., Geldner N. Diffusible repression of cytokinin signalling produces endodermal symmetry and passage cells. Nature. 2018;555:529–533. doi: 10.1038/nature25976. PubMed DOI PMC

Karahara I., Umemura K., Soga Y., Akai Y., Bando T., Ito Y., Tamaoki D., Uesugi K., Abe J., Yamauchi D. Demonstration of osmotically dependent promotion of aerenchyma formation at different levels in the primary roots of rice using a ‘sandwich’ method and X-ray computed tomography. Ann. Bot. 2012;110:503–509. doi: 10.1093/aob/mcs075. PubMed DOI PMC

Soukup A., Tylová E. Essential methods of plant sample preparation for light microscopy. In: Žárský V., Cvrčková F., editors. Plant Cell Morphogenesis. Methods and Protocols. Springer Science; New York, NY, USA: 2014. pp. 1–23. PubMed

Soukup A. Selected simple methods of plant cell wall histochemistry and staining for light microscopy. In: Žárský V., Cvrčková F., editors. Plant Cell Morphogenesis. Methods and Protocols. Springer Science; New York, NY, USA: 2014. pp. 25–40. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...