Surveillance of cell wall diffusion barrier integrity modulates water and solute transport in plants
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
BB/N023927/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
30862916
PubMed Central
PMC6414709
DOI
10.1038/s41598-019-40588-5
PII: 10.1038/s41598-019-40588-5
Knihovny.cz E-resources
- MeSH
- Arabidopsis genetics metabolism MeSH
- Biological Transport physiology MeSH
- Cell Wall genetics metabolism MeSH
- Diffusion MeSH
- Plant Roots genetics metabolism MeSH
- Lignin genetics metabolism MeSH
- Lipids genetics MeSH
- Water metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Lignin MeSH
- Lipids MeSH
- suberin MeSH Browser
- Water MeSH
The endodermis is a key cell layer in plant roots that contributes to the controlled uptake of water and mineral nutrients into plants. In order to provide such functionality the endodermal cell wall has specific chemical modifications consisting of lignin bands (Casparian strips) that encircle each cell, and deposition of a waxy-like substance (suberin) between the wall and the plasma membrane. These two extracellular deposits provide control of diffusion enabling the endodermis to direct the movement of water and solutes into and out of the vascular system in roots. Loss of integrity of the Casparian strip-based apoplastic barrier is sensed by the leakage of a small peptide from the stele into the cortex. Here, we report that such sensing of barrier integrity leads to the rebalancing of water and mineral nutrient uptake, compensating for breakage of Casparian strips. This rebalancing involves both a reduction in root hydraulic conductivity driven by deactivation of aquaporins, and downstream limitation of ion leakage through deposition of suberin. These responses in the root are also coupled to a reduction in water demand in the shoot mediated by ABA-dependent stomatal closure.
Department of Agronomy and Horticulture University of Nebraska Lincoln Lincoln NE 68588 0660 USA
Department of Plant Molecular Biology University of Lausanne 1015 Lausanne Switzerland
Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen AB24 3UU UK
See more in PubMed
Geldner N. The endodermis. Annu. Rev. Plant Biol. 2013;64:531–558. doi: 10.1146/annurev-arplant-050312-120050. PubMed DOI
Andersen TG, Barberon M, Geldner N. Suberization — the second life of an endodermal cell. Current Opinion in Plant Biology. 2015;28:9–15. doi: 10.1016/j.pbi.2015.08.004. PubMed DOI
Hosmani PS, et al. Dirigent domain-containing protein is part of the machinery required for formation of the lignin-based Casparian strip in the root. Proc. Natl. Acad. Sci. USA. 2013;110:14498–14503. doi: 10.1073/pnas.1308412110. PubMed DOI PMC
Pfister, A. et al. A receptor-like kinase mutant with absent endodermal diffusion barrier displays selective nutrient homeostasis defects. Elife3 (2014). PubMed PMC
Kamiya, T. et al. The MYB36 transcription factor orchestrates Casparian strip formation. Proc. Natl. Acad. Sci. USA 201507691, 10.1073/pnas.1507691112 (2015). PubMed PMC
Barberon, M. et al. Adaptation of Root Function by Nutrient-Induced Plasticity of Endodermal Differentiation. Cell 1–35, 10.1016/j.cell.2015.12.021 (2016). PubMed
Li, B. et al. Role of LOTR1 in Nutrient Transport through Organization of Spatial Distribution of Root Endodermal Barriers. Curr. Biol. 1–9, 10.1016/j.cub.2017.01.030 (2017). PubMed
Kalmbach, L. et al. Transient cell-specific EXO70A1 activity in the CASP domain and Casparian strip localization. NaturePlants 1–9, 10.1038/nplants.2017.58 (2017). PubMed
Lee Y, Rubio MC, Alassimone J, Geldner N. A Mechanism for Localized Lignin Deposition in the Endodermis. Cell. 2013;153:402–412. doi: 10.1016/j.cell.2013.02.045. PubMed DOI
Baxter I, et al. Root Suberin Forms an Extracellular Barrier That Affects Water Relations and Mineral Nutrition in Arabidopsis. PLoS Genet. 2009;5:e1000492. doi: 10.1371/journal.pgen.1000492. PubMed DOI PMC
Doblas VG, et al. Root diffusion barrier control by a vasculature-derived peptide binding to the SGN3 receptor. Science. 2017;355:280–284. doi: 10.1126/science.aaj1562. PubMed DOI
Nakayama T, et al. A peptide hormone required for Casparian strip diffusion barrier formation in Arabidopsis roots. Science. 2017;355:284–286. doi: 10.1126/science.aai9057. PubMed DOI
Nawrath C, et al. Apoplastic Diffusion Barriers in Arabidopsis. The Arabidopsis Book. 2013;11:e0167–36. doi: 10.1199/tab.0167. PubMed DOI PMC
Ranathunge K, Schreiber L. Water and solute permeabilities of Arabidopsis roots in relation to the amount and composition of aliphatic suberin. Journal of Experimental Botany. 2011;62:1961–1974. doi: 10.1093/jxb/erq389. PubMed DOI PMC
Péret B, et al. Auxin regulates aquaporin function to facilitate lateral root emergence. Nature Cell Biology. 2012;14:991–998. doi: 10.1038/ncb2573. PubMed DOI
Santoni, V. In Plant Aquaporins285, 83–105 (Springer, Cham, 2017).
Bellati J, et al. Novel Aquaporin Regulatory Mechanisms Revealed by Interactomics. Mol Cell Proteomics. 2016;15:3473–3487. doi: 10.1074/mcp.M116.060087. PubMed DOI PMC
Maurel C, et al. Aquaporins in Plants. Physiological Reviews. 2015;95:1321–1358. doi: 10.1152/physrev.00008.2015. PubMed DOI
Koornneef M, Jorna ML, Brinkhorst-van der Swan DL, Karssen CM. The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines of Arabidopsis thaliana (L.) heynh. Theor. Appl. Genet. 1982;61:385–393. doi: 10.1007/BF00272861. PubMed DOI
Di Laurenzio L, et al. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell. 1996;86:423–433. doi: 10.1016/S0092-8674(00)80115-4. PubMed DOI
Shatil-Cohen A, Attia Z, Moshelion M. Bundle-sheath cell regulation of xylem-mesophyll water transport via aquaporins under drought stress: a target of xylem-borne ABA? The Plant Journal. 2011;67:72–80. doi: 10.1111/j.1365-313X.2011.04576.x. PubMed DOI
Takahashi F, et al. A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature. 2018;556:235–238. doi: 10.1038/s41586-018-0009-2. PubMed DOI
Vermeer JEM, et al. A Spatial Accommodation by Neighboring Cells Is Required for Organ Initiation in Arabidopsis. Science. 2014;343:178–183. doi: 10.1126/science.1245871. PubMed DOI
Domergue F, et al. Three Arabidopsis Fatty Acyl-Coenzyme A Reductases, FAR1, FAR4, and FAR5, Generate Primary Fatty Alcohols Associated with Suberin Deposition. Plant Physiology. 2010;153:1539–1554. doi: 10.1104/pp.110.158238. PubMed DOI PMC
Naseer S, et al. Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin. Proc. Natl. Acad. Sci. USA. 2012;109:10101–10106. doi: 10.1073/pnas.1205726109. PubMed DOI PMC
Marsch-Martínez N, et al. An efficient flat-surface collar-free grafting method for Arabidopsis thaliana seedlings. Plant Methods. 2013;9:14. doi: 10.1186/1746-4811-9-14. PubMed DOI PMC
Malamy JE, Benfey PN. Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development. 1997;124:33–44. PubMed
Lux A, MORITA S, Abe J, ITO K. An Improved Method for Clearing and Staining Free-hand Sections and Whole-mount Samples*. Annals of Botany. 2005;96:989–996. doi: 10.1093/aob/mci266. PubMed DOI PMC
Ursache R, Andersen TG, Marhavy P, Geldner N. A protocol for combining fluorescent proteins with histological stains for diverse cell wall components. The Plant Journal. 2018;93:399–412. doi: 10.1111/tpj.13784. PubMed DOI
Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Hilu KW, Taxon JR. 1984. Convenient method for studying grass leaf epidermis. JSTOR. 1984;33:413.
Javot H. The Role of Aquaporins in Root Water Uptake. Annals of Botany. 2002;90:301–313. doi: 10.1093/aob/mcf199. PubMed DOI PMC
Sutka M, et al. Natural variation of root hydraulics in Arabidopsis grown in normal and salt-stressed conditions. Plant Physiology. 2011;155:1264–1276. doi: 10.1104/pp.110.163113. PubMed DOI PMC
Novák O, et al. Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. The Plant Journal. 2012;72:523–536. doi: 10.1111/j.1365-313X.2012.05085.x. PubMed DOI
Floková K, et al. UHPLC-MS/MS based target profiling of stress-induced phytohormones. Phytochemistry. 2014;105:147–157. doi: 10.1016/j.phytochem.2014.05.015. PubMed DOI
Exodermis and Endodermis Respond to Nutrient Deficiency in Nutrient-Specific and Localized Manner