Antioxidant and Anti-Proliferative Properties of Hagenia abyssinica Roots and Their Potentially Active Components

. 2020 Feb 06 ; 9 (2) : . [epub] 20200206

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32041310

Grantová podpora
2017AHB054 Major Project for Special Technology Innovation of Hubei Province
CZ.02.1.01/0.0/0.0/16_019/0000868 European Regional Development Fund - Project ENOCH

Hagenia abyssinica (Bruce) J. F. Gmel. is a multipurpose dioecious tree that has been used to treat various ailments, for example, the flowers of H. abyssinica have been widely used as a tea to treat intestinal parasites by local residents and the roots of H. abyssinica could also be used for anticancer purposes. Antioxidant activity could be one of the most important pathways to suppress cancer and there is hardly any information available on the specific chemical components corresponding to the bioactivities of H. abyssinica to date. The present study intended to screen and evaluate the antioxidant and anti-proliferative properties of five different fractions from H. abyssinica along with their corresponding total flavonoid and phenolic contents and then further identify those compounds with the most potent antioxidant and anti-proliferative activities using high performance liquid chromatography (HPLC) coupled to mass spectrometry (MS) and nuclear magnetic resonance (NMR). The total flavonoid and phenolic content assays showed that the ethyl acetate (EA) fraction of H. abyssinica had higher flavonoid and phenolic levels than the other four fractions. Furthermore, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) superoxide radical scavenging abilities, total antioxidant capacity (TAC) assay with 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS), and ferric-reducing antioxidant power (FRAP) were measured to evaluate the antioxidant activities of the five fractions and some pure compounds isolated from the EA fraction, which displayed higher antioxidant properties than that of the other fractions. Caffeic acid from the EA fraction showed even stronger DPPH scavenging ability (IC50 7.858 ± 0.31 µg/mL) than that of Vc (IC50 8.27 ± 0.11 µg/mL) as the positive control. The anti-proliferative properties of four fractions and the ethanol extract were evaluated by the 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay and the EA fraction exhibited higher anti-proliferative activities against three cancer cell lines than that of the other fractions. Additionally, the compounds with good antioxidant activity from the EA fraction of H. abyssinica were screened and identified using LC-MS and NMR and were also found to possess good anti-proliferative activity. In the MTT assay, the quercetin showed the strongest dose-dependent anti-proliferative activities to colon cancer cells (HT-29) and liver cancer cells (HepG2) among all of the compounds isolated. This study provided valuable information on the synergistic antioxidant and anti-proliferative properties of H. abyssinica.

Zobrazit více v PubMed

Feyissa T., Zhu L.H., Negash L., Welander M. Regeneration and genetic transformation of Hagenia abyssinica (Bruce) J.F. Gmel. (Rosaceae) with rolB gene. Plant Cell Tiss. Organ Cult. 2007;88:277–288. doi: 10.1007/s11240-006-9200-5. DOI

Negash L. Indigenous Trees of Ethiopia: Biology, Uses and Propagation Techniques. The SLU Reprocentralen; Umeå, Sweden: 1995. pp. 125–147.

Ayele T.B., Gailing O., Umer M. Chloroplast DNA haplotype diversity and postglacial recolonization of Hagenia abyssinica (Bruce) J.F. Gmel. In Ethiopia. Plant Syst. Evol. 2009;280:175–185. doi: 10.1007/s00606-009-0177-5. DOI

Kokwaro J.O. Medicinal Plants of East Africa. East African Literature Bureau; Nairobi, Kenya: 1976. pp. 292–294.

Beentje H., Adamson J., Bhanderi D. Kenya Trees Shrubs and Lianas. National Museums of Kenya; Nairobi, Kenya: 1994.

Assefa B., Glatzel G., Buchmann C. Ethnomedicinal uses of Hagenia abyssinica (Bruce) J.F. Gmel. Among rural communities of Ethiopia. J. Ethnobiolo. Ethnomed. 2010;6:20. doi: 10.1186/1746-4269-6-20. PubMed DOI PMC

Woldemariam T.Z., Fell A.F., Linley P.A., Bibby M.C., Phillips R.M. Evaluation of the anti-tumour action and acute toxicity of kosins from Hagenia abyssinica. J. Pharmaceut. Biomed. 1992;10:555–560. doi: 10.1016/0731-7085(92)80080-7. PubMed DOI

Watt J.M., Breyer-Brandwijk M.G. The Medicinal and Poisonous Plants of Southern and Eastern Africa. 2nd ed. E. & S. Livingstone Ltd.; Scotland, UK: 1962.

Farnsworth N.R., Bingel A.S., Cordell G.A., Crane F.A., Fong F.A. Potential value of plants as source of new, antifertility agents I. J. Pharmacol. Sci. 1975;64:535–598. doi: 10.1002/jps.2600640404. PubMed DOI

Low G., Rogers L.J., Brumley S.P., Ehrlich D. Visual deficits and retinotoxicity caused by the naturally occurring anthelmintics, Embelia ribes and Hagenia abyssinica. Toxicol. Appl. Pharmacol. 1985;81:220–230. doi: 10.1016/0041-008X(85)90158-9. PubMed DOI

Abebe D., Ayehu A. Medicinal plants and enigmatic health practices of Northern Ethiopia. Birhanena Selam Printing Enterprise; Addis Ababa, Ethiopia: 1993.

Fassil K., Getachew A. Proceedings of the Workshop on Development Utilization of Herbal Remedies in Ethiopia. Ethiopian Health and nutrition Institute; Addis Ababa, Ethiopia: 1996. Utilization and conservation of medicinal plants in Ethiopia; pp. 46–52.

Thomas C. Oxygen Radicals and the Disease Process. CRC Press; Amsterdam, The Netherlands: 1998. pp. 1–282.

Park C., Yeo H., Baskar T., Park Y., Park J., Lee S., Park S. In vitro antioxidant and Antimicrobial properties of flower, leaf, and stem extracts of Korean Mint. Antioxidants. 2019;8:75. doi: 10.3390/antiox8030075. PubMed DOI PMC

Matés J.M., Pérez-Gómez C., De Castro I.N. Antioxidant enzymes and human diseases. Clin. Biochem. 1999;32:595–603. doi: 10.1016/S0009-9120(99)00075-2. PubMed DOI

Khan N., Afaq F., Mukhtar H. Cancer chemoprevention through dietary antioxidants: Progress and promise. Antioxid. Redox Sign. 2008;10:475–510. doi: 10.1089/ars.2007.1740. PubMed DOI

Lopez–Lazaro M. Excessive superoxide anion generation plays a key role in carcinogenesis. Int. J. Cancer. 2007;120:1378–1380. doi: 10.1002/ijc.22493. PubMed DOI

Trachootham D., Alexandre J., Huang P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov. 2009;8:579–591. doi: 10.1038/nrd2803. PubMed DOI

Hanahan D., Weinberg R.A. The hallmarks of cancer. Cell. 2000;100:57–70. doi: 10.1016/S0092-8674(00)81683-9. PubMed DOI

Trachootham D., Zhou Y., Zhang H., Demizu Y., Chen Z., Pelicano H., Chiao P.J., Achanta G., Arlinghaus R.B., Liu J., et al. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by β-phenylethyl isothiocyanate. Cancer Cell. 2006;10:241–252. doi: 10.1016/j.ccr.2006.08.009. PubMed DOI

Nibret E., Wink M. Trypanocidal and antileukaemic effects of the essential oils of Hagenia abyssinica, Leonotis ocymifolia, Moringa stenopetala, and their main individual constituents. Phytomedicine. 2010;17:911–920. doi: 10.1016/j.phymed.2010.02.009. PubMed DOI

Lounasmaa M., Widén C.J., Huhtikangas A. Phloroglucinol derivatives of Hagenia abyssinica. Phytochemistry. 1973;12:2017–2025. doi: 10.1016/S0031-9422(00)91527-9. DOI

Lounasmaa M., Widén C.J., Huhtikangas A. Phloroglucinol derivatives of Hagenia abyssinica. II. The structure determination of kosotoxin and protokosin. Acta Chem. Scand. B. 1974;28:1200–1208. doi: 10.3891/acta.chem.scand.28b-1200. PubMed DOI

Lounasmaa M., Varenne P. Dérivés phloroglucinoliques d’ Hagenia abyssinica V1. Planta Med. 1978;34:153–159. doi: 10.1055/s-0028-1097427. DOI

Wolde T., Bizuayehu B., Hailemariam T., Tiruha K. Phytochemical analysis and antimicrobial activity of Hagenia abyssinica. Indian J. Pharm. Pharmacol. 2016;3:127–134. doi: 10.5958/2393-9087.2016.00028.5. DOI

Gul M.Z., Ahmad F., Kondapi A.K., Qureshi I.A., Ghazi I.A. Antioxidant and anti-proliferative activities of Abrus precatorius leaf extracts-an in vitro study. BMC Complem. Altern. Med. 2013;13:53. doi: 10.1186/1472-6882-13-53. PubMed DOI PMC

Tuasha N., Petros B., Asfaw Z. Medicinal plants used by traditional healers to treat malignancies and other human ailments in Dalle District, Sidama Zone, Ethiopia. J. Ethnobiol. Ethnomed. 2018;14:15. doi: 10.1186/s13002-018-0213-z. PubMed DOI PMC

Yonas A., Zeleke M., Ahmed Z., Moti Y., Abdissa B., Sultan S. Anti-schistosomal activities of Echinops kebericho Mesfin root and Hagenia abyssinica (Bruce) J.F Gmel flower part crude extracts in Swiss albino mice. Asian Pac. J. Trop. Med. 2018;11:26–31.

Xu Y.B., Chen G.L., Guo M.Q. Antioxidant and anti-inflammatory activities of the crude extracts of Moringa oleifera from Kenya and their correlations with flavonoids. Antioxidants. 2019;8:296. doi: 10.3390/antiox8080296. PubMed DOI PMC

Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999;26:1231–1237. doi: 10.1016/S0891-5849(98)00315-3. PubMed DOI

Benzi I.F.F., Strain J.J. The ferric reducing ability of plasma (FRAP) as ameasure of ‘antioxidant power’: The FRAP assay. Anal. Biochem. 1996;239:70–76. doi: 10.1006/abio.1996.0292. PubMed DOI

Kim D.O., Jeong S.W., Lee C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003;81:321–326. doi: 10.1016/S0308-8146(02)00423-5. DOI

Anjum S., Gani A., Ahmad M., Shah A., Masoodi F.A., Shah Y., Asir G. Antioxidant and anti-proliferative activity of walnut extract (Juglans regia L.) processed by different methods and identification of compounds using GC/MS and LC/MS technique. J. Food Process. Pres. 2016;41:1–9.

Zhu M.Z., Wu W., Jiao L.L., Yang P.F., Guo M.Q. Analysis of flavonoids in lotus (Nelumbo nucifera) leaves and their antioxidant activity using macroporous resin chromatography coupled with LC-MS/MS and antioxidant biochemical assays. Molecules. 2015;20:10553–10565. doi: 10.3390/molecules200610553. PubMed DOI PMC

Schumacker P.T. Sirt3 controls cancer metabolic reprogramming by regulating ROS and HIF. Cancer Cell. 2011;19:299–300. doi: 10.1016/j.ccr.2011.03.001. PubMed DOI PMC

Li F.L., WU X., Liao H.B., Qiu S.L., Zhu X.H., Cui L., Wu H. Dalbinol induces apoptosis of human colon cancer cells through ROS/ DVL/GSK-3β/β-catenin pathway. Chin. Pharm. Bull. 2016;32:1694–1698.

Othman A., Mukhtar N.J., Ismail N.S., Chang S.K. Phenolics, flavonoids content and antioxidant activities of 4 Malaysian herbal plants. Int. Food Res. J. 2014;21:759–766.

Ma Y., Zhao L.F., Lv Z.Y., Sun L., Wu W., Liu S.Y. Analysis of flavonoids and polyphenols in mulberry extracts by high-performance liquid chromatography quadrupole-qrbitrap mass spectrometry. J. Chin. Mass Spectrom. Soc. 2017;38:46–51.

Yin J.T., Ma Y.L., Liang C., Gao J., Wang H.R., Zhang L.T. A systematic study on the metabolites of dietary acacetin in vivo and in vitro based on UHPLC-Q-TOF-MS/MS analysis. J. Agric. Food Chem. 2019;67:5530–5543. doi: 10.1021/acs.jafc.9b00330. PubMed DOI

Marles M.A.S., Gruber M.Y., Scoles G.J., Muir A.D. Pigmentation in the developing seed coat and seedling leaves of Brassica carinatais controlled at the dihydroflavonol reductase locus. Phytochemistry. 2003;62:663–672. doi: 10.1016/S0031-9422(02)00488-0. PubMed DOI

Chang C.C., Lee S.S. Rapid identification of flavonoid glycosides in Pasania kawakamii and Cyclobalanopsis morii via HPLC/MS and HPLC-SPE-NMR. Chem. Nat. Compd. 2012;48:689–692. doi: 10.1007/s10600-012-0352-8. DOI

Guyot S., Vercauteren J., Cheynier V. Structural determination of colourless and yellow dimers resulting from (+)-catechin coupling catalysed by grape polyphenoloxidase. Phytochemistry. 1996;42:1279–1288. doi: 10.1016/0031-9422(96)00127-6. DOI

Song X.F., Fan B.L., Zeng X.L., Li T.T., Shi Y.M., Zou J.J., Yang J., Chen H.G. Simultaneous determination of seven active polyphenols in different Osmanthus fragrans cultivars by HPLC-MS/MS. Chin. J. Pharm. Anal. 2019;39:1811–1820.

Sun J.P., Liang F., Yan B., Ping L., Duan C.Q. Screening Non-colored Phenolics in red wines using liquid chromatography/ultraviolet and mass spectrometry/mass spectrometry libraries. Molecules. 2007;12:679–693. doi: 10.3390/12030679. PubMed DOI PMC

Zhang L., Li Y., Liang Y., Liang K., Zhang F., Xu T., Wang M., Song H., Liu X., Lu B. Determination of phenolic acid profiles by HPLC-MS in vegetables commonly consumed in China. Food Chem. 2019;276:538–546. doi: 10.1016/j.foodchem.2018.10.074. PubMed DOI

Zhu H., Ma X., Kong J.Y., Zhang M.L., Kenttämaa H.I. Identification of carboxylate, phosphate, and phenoxide functionalities in deprotonated molecules related to drug metabolites via ion–molecule reactions with water and diethylhydroxyborane. J. Am. Soc. Mass Spectrom. 2017;28:2189–2200. doi: 10.1007/s13361-017-1713-0. PubMed DOI

Dao P.T.A., Quan T.L., Mai N.T.T. Antioxidant constituents from the stem of Tetrastigma erusbescense Planch. (Vitaceae) Nat. Prod. Sci. 2014;20:22–28.

Li C.W., Cui C.B. One new and nine known flavonoids from choerospondias axillaries and their in vitro antitumor, anti-hypoxia and antibacterial activities. Molecules. 2014;19:21363–21377. doi: 10.3390/molecules191221363. PubMed DOI PMC

Fan M.X., Chen G.L., Sun B.Q., Wu J.L., Guo M.Q. Screening for natural inhibitors of human topoisomerases from medicinal plants with bio-affinity ultrafiltration and LC–MS. Phytochem. Rev. 2019:1–31. doi: 10.1007/s11101-019-09635-x. DOI

Singh M., Kaur M., Silakari O. Flavones: An important scaffold for medicinal chemistry. Eur. J. Med. Chem. 2014;84:206–239. doi: 10.1016/j.ejmech.2014.07.013. PubMed DOI

Zhao X.W., Liu P.Y., Liu D., Sun S.S., Zhen L., YU K.X., Zhang M.L., Shi Q.W. Research progress in structure-activity relationship of flavonoids. Chin. Tradit. Herb. Drugs. 2015;46:3264–3271.

Lopezlazaro M. Flavonoids as anticancer agents: Structure-activity relationship study. Curr. Med. Chem. 2002;2:691. PubMed

Habtemariam S. Flavonoids as inhibitors or enhancers of the cytotoxicity of tumor necrosis factor-α in L-929 tumor cells. J. Nat. Prod. 1997;60:775–778. doi: 10.1021/np960581z. PubMed DOI

Kurth E.F., Chan F.L. Dihydroquercetin as an antioxidant. J. Am. Oil Chem. Soc. 1951;28:433–436. doi: 10.1007/BF02589681. DOI

Coskun O., Kanter M., Korkmaz A., Oter S. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. Pharm. Res. 2005;51:117–123. doi: 10.1016/j.phrs.2004.06.002. PubMed DOI

Fadeev R.S., Kaptsov V.V., Uminsky A.A., Akatov V.S. Cytotoxic effect of dihydroquercetin and its derivatives in liposomal form and in the form of fat nanoscale emulsions. Biochem. Supp. 2011;5:45–50. doi: 10.1134/S1990747811010053. DOI

Massi A., Bortolini O., Ragno D., Bernardi T., Sacchetti G., Tacchini M., De Risi C. Research progress in the modification of quercetin leading to anticancer agents. Molecules. 2017;22:1270. doi: 10.3390/molecules22081270. PubMed DOI PMC

Liang L., Gao C., Luo M., Wang W., Zhao C., Zu Y., Efferth T., Fu Y. Dihydroquercetin (DHQ) induced HO-1 and NQO1 expression against oxidative stress through the NRF2-dependent antioxidant pathway. J. Agric. Food Chem. 2013;61:2755–2761. doi: 10.1021/jf304768p. PubMed DOI

Lee S., Lim M.J., Kim M.H., Yu C.H., Yun Y.S., Ahn J., Song J.Y. An effective strategy for increasing the radiosensitivity of human lung cancer cells by blocking nrf2-dependent antioxidant responses. Free Radic. Biol. Med. 2012;53:807–816. doi: 10.1016/j.freeradbiomed.2012.05.038. PubMed DOI

Gulati N., Laudet B., Zohrabian V.M., Murali R., Jhanwaruniyal M. The anti-proliferative effect of quercetin in cancer cells is mediated via inhibition of the PI3K-AKT/PKB pathway. Anticancer Res. 2006;26:1177–1181. PubMed

Hsu Y.L., Kuo P.L., Lin C.C. Acacetin inhibits the proliferation of HepG2 by blocking cell cycle progression and inducing apoptosis. Biochem. Pharmacol. 2004;67:823–829. doi: 10.1016/j.bcp.2003.09.042. PubMed DOI

Vijai K.A., Hala N.E., Shabana I.K., Troy J.S., Ikhlas A.K., Larry A.W. Antioxidant constituents of Nymphaea caerulea flowers. Phytochemistry. 2008;69:2061–2066. PubMed

Amado N.G., Cerqueira D.M., Menezes F.S., Da S.J., Neto V.M., Abreu J.G. Isoquercitrin isolated from Hyptis fasciculata reduces glioblastoma cell proliferation and changes β-catenin cellular localization. Anticancer Drug. 2009;20:543–552. doi: 10.1097/CAD.0b013e32832d1149. PubMed DOI

Zhang N., Du L.L., Wang D., Liu X.Q. Research progress of phenolic acids in traditional Chinese medicine. Mod. Chin. Med. 2006;8:25–28.

Zhang Y., Wu X.Q., Ding X.L. Study on the relationship between the structure of flavonoids and the scavenging efficacy of reactive oxygen species. Nat. Prod. Res. Dev. 1998;10:26–33.

López-Posadas R., Ballester I., Abadía-Molina A.C., Suárez M.D., Zarzuelo A., Martínez-Augustin O., de Medina F.S. Effectof flavonoids on rat splenocytes, a structure–activity relationship study. Biochem. Pharmacol. 2008;76:495–506. doi: 10.1016/j.bcp.2008.06.001. PubMed DOI

Sun J., Huang Y., Sun G.B., Sun X.B., Qin M., Zhao D. Study on in vitro antioxidant activity of flavonoids contained in hebei balmy chrysanthemum and structure-activity relationship. China J. Chin. Mater. Med. 2012;37:1958. PubMed

Shen K.H., Hung S.H., Yin L.T., Huang C.S., Chao C.H., Liu C.L., Shih Y.W. Acacetin, a flavonoid, inhibits the invasion and migration of human prostate cancer du145 cells via inactivation of the p38 MAPK signaling pathway. Mol. Cell. Biochem. 2010;333:279–291. doi: 10.1007/s11010-009-0229-8. PubMed DOI

Jeong E.J., Hwang L., Lee M., Lee K.Y., Ahn M.J., Sung S.H. Neur-oprotective biflavonoids of Chamaecyparis obtusa leaves against glutamate-induced oxidative stress in HT22 hippocampal cells. Food Chem. Toxicol. 2014;64:397–402. doi: 10.1016/j.fct.2013.12.003. PubMed DOI

Pradhan D., Panda P.K., Tripathy G., Pattanayak J.R.N. Anticancer activity of biflavonoids from lonicera japonica and benincasa hispida on human cancer cell lines. J. Pharm. Res. 2009;2:983–985.

Han J., Weng X., Bi K. Antioxidants from a Chinese medicinal herb-Lithospermum erythrorhizon. Food Chem. 2008;106:2–10. doi: 10.1016/j.foodchem.2007.01.031. DOI

Balasundram N., Sundram K., Samman S. Phenolic compounds in plants and AGRI-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006;99:191–203. doi: 10.1016/j.foodchem.2005.07.042. DOI

Chen Y., Xu K.Z., Song J.R., Hang J., Nie W. Theoretical study on antioxidant activity of five phenolic acids. Food Sci. 2011;32:36–39.

Lin H.H., Chen J.H., Huang C.C., Wang C.J. Apoptotic effect of 3,4-dihydroxybenzoic acid on human gastric carcinoma cells involving JNK/p38 mapk signaling activation. Int. J. Cancer. 2007;120:2306–2316. doi: 10.1002/ijc.22571. PubMed DOI

Xiao X.N., Xu W.H., Zuo D., Liao X., Ming J. The syner gistic antioxidant effect and structure-activity relationship of six flavonoids. Food Mach. 2017;11:7–10.

Riceevans C.A., Miller N.J., Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996;20:933–956. doi: 10.1016/0891-5849(95)02227-9. PubMed DOI

Gong J.Y., Huang J., Xiao G.N., Chen F., Lee B., Ge Q., You Y., Liu S. Antioxidant capacities of fractions of bamboo shaving extract and their antioxidant components. Molecules. 2016;21:996. doi: 10.3390/molecules21080996. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...