High-speed automatic characterization of rare events in flow cytometric data

. 2020 ; 15 (2) : e0228651. [epub] 20200211

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32045462

Grantová podpora
P01 HL131477 NHLBI NIH HHS - United States
P30 CA008748 NCI NIH HHS - United States
R35 CA197697 NCI NIH HHS - United States
UL1 TR001863 NCATS NIH HHS - United States

A new computational framework for FLow cytometric Analysis of Rare Events (FLARE) has been developed specifically for fast and automatic identification of rare cell populations in very large samples generated by platforms like multi-parametric flow cytometry. Using a hierarchical Bayesian model and information-sharing via parallel computation, FLARE rapidly explores the high-dimensional marker-space to detect highly rare populations that are consistent across multiple samples. Further it can focus within specified regions of interest in marker-space to detect subpopulations with desired precision.

Zobrazit více v PubMed

Preffer F, Dombkowski D. Advances in complex multiparameter flow cytometry technology: Applications in stem cell research. Cytometry Part B: Clinical Cytometry. 2009;76B(5):295–314. 10.1002/cyto.b.20480 PubMed DOI PMC

Tanner SD, Bandura DR, Ornatsky O, Baranov VI, Nitz M, Winnik MA. Flow cytometer with mass spectrometer detection for massively multiplexed single-cell biomarker assay. Pure and Applied Chemistry. 2009;80(12):2627–2641. 10.1351/pac200880122627 DOI

Bendall SC, Simonds EF, Qiu P, Amir EaD, Krutzik PO, Finck R, et al. Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum. Science. 2011;332(6030):687–696. 10.1126/science.1198704 PubMed DOI PMC

Pyne S, Hu X, Wang K, Rossin E, Lin TI, Maier LM, et al. Automated high-dimensional flow cytometric data analysis. Proceedings of the National Academy of Sciences. 2009;106(21):8519–8524. 10.1073/pnas.0903028106 PubMed DOI PMC

Qiu P, Simonds EF, Bendall SC, Gibbs KD, Bruggner RV, Linderman MD, et al. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nature Biotechnology. 2011;29(10):886–891. PubMed PMC

Lee SX, McLachlan GJ, Pyne S. Modeling of inter-sample variation in flow cytometric data with the joint clustering and matching procedure. Cytometry Part A. 2016;89(1):30–43. 10.1002/cyto.a.22789 PubMed DOI

Lugli E, Roederer M, Cossarizza A. Data analysis in flow cytometry: The future just started. Cytometry Part A. 2010;77A(7):705–713. 10.1002/cyto.a.20901 PubMed DOI PMC

Pyne S, Lee SX, Wang K, Irish J, Tamayo P, Nazaire MD, et al. Joint Modeling and Registration of Cell Populations in Cohorts of High-Dimensional Flow Cytometric Data. PLoS ONE. 2014;9(7):e100334 10.1371/journal.pone.0100334 PubMed DOI PMC

Maecker HT, McCoy JP, Nussenblatt R. Standardizing immunophenotyping for the Human Immunology Project. Nature Reviews Immunology. 2012;12(3):191–200. 10.1038/nri3158 PubMed DOI PMC

Cron A, Gouttefangeas C, Frelinger J, Lin L, Singh SK, Britten CM, et al. Hierarchical modeling for rare event detection and cell subset alignment across flow cytometry samples. PLoS Comput Biol. 2013;9(7):e1003130 10.1371/journal.pcbi.1003130 PubMed DOI PMC

Brown D, Kogan S, Lagasse E, Weissman I, Alcalay M, Pelicci PG, et al. A PML–RARα transgene initiates murine acute promyelocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America. 1997;94(6):2551–2556. 10.1073/pnas.94.6.2551 PubMed DOI PMC

Guibal FC, Alberich-Jorda M, Hirai H, Ebralidze A, Levantini E, Di Ruscio A, et al. Identification of a myeloid committed progenitor as the cancer-initiating cell in acute promyelocytic leukemia. Blood. 2009;114(27):5415–5425. 10.1182/blood-2008-10-182071 PubMed DOI PMC

Wojiski S, Guibal FC, Kindler T, Lee BH, Jesneck JL, Fabian A, et al. PML–RARα initiates leukemia by conferring properties of self-renewal to committed promyelocytic progenitors. Leukemia. 2009;23(8):1462–1471. 10.1038/leu.2009.63 PubMed DOI PMC

Lee SX, McLachlan G, Pyne S. In: Pyne S, Rao BLSP, Rao SB, editors. Application of Mixture Models to Large Datasets. New Delhi: Springer India; 2016. p. 57–74. Available from: 10.1007/978-81-322-3628-3_4. DOI

Chan C, Feng F, Ottinger J, Foster D, West M, Kepler TB. Statistical mixture modeling for cell subtype identification in flow cytometry. Cytometry A. 2008;73(8):693–701. 10.1002/cyto.a.20583 PubMed DOI PMC

Ho HJ, Lin TI, Chang HH, Haase SB, Huang S, Pyne S. Parametric modeling of cellular state transitions as measured with flow cytometry. BMC Bioinformatics. 2012;13 Suppl 5:S5 10.1186/1471-2105-13-S5-S5 PubMed DOI PMC

Lin L, Chan C, Hadrup SR, Froesig TM, Wang Q, West M. Hierarchical Bayesian mixture modelling for antigen-specific T-cell subtyping in combinatorially encoded flow cytometry studies. Stat Appl Genet Mol Biol. 2013;12(3):309–331. 10.1515/sagmb-2012-0001 PubMed DOI PMC

Richards AJ, Staats J, Enzor J, McKinnon K, Frelinger J, Denny TN, et al. Setting objective thresholds for rare event detection in flow cytometry. J Immunol Methods. 2014;409:54–61. 10.1016/j.jim.2014.04.002 PubMed DOI PMC

Naim I, Datta S, Rebhahn J, Cavenaugh JS, Mosmann TR, Sharma G. SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 1: algorithm design. Cytometry A. 2014;85(5):408–421. 10.1002/cyto.a.22446 PubMed DOI PMC

Lin L, Frelinger J, Jiang W, Finak G, Seshadri C, Bart PA, et al. Identification and visualization of multidimensional antigen-specific T-cell populations in polychromatic cytometry data. Cytometry A. 2015;87(7):675–682. 10.1002/cyto.a.22623 PubMed DOI PMC

Aghaeepour N, Nikolic R, Hoos HH, Brinkman RR. Rapid cell population identification in flow cytometry data. Cytometry A. 2011;79(1):6–13. 10.1002/cyto.a.21007 PubMed DOI PMC

Ge Y, Sealfon SC. flowPeaks: a fast unsupervised clustering for flow cytometry data via K-means and density peak finding. Bioinformatics. 2012;28(15):2052–2058. 10.1093/bioinformatics/bts300 PubMed DOI PMC

Ye X, Ho JWK. Ultrafast clustering of single-cell flow cytometry data using FlowGrid. BMC Systems Biology. 2019;13(2):35 10.1186/s12918-019-0690-2 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...