Adaptation of Mitochondrial Substrate Flux in a Mouse Model of Nonalcoholic Fatty Liver Disease
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Inter-Cost LTC17044
MŠMT, ČR
PROGRES Q40/02
Univerzita Karlova
PubMed
32046101
PubMed Central
PMC7036817
DOI
10.3390/ijms21031101
PII: ijms21031101
Knihovny.cz E-zdroje
- Klíčová slova
- mitochondria, nonalcoholic fatty liver disease, oxidative phosphorylation, respirometry,
- MeSH
- dieta s vysokým obsahem tuků škodlivé účinky MeSH
- glutathion metabolismus MeSH
- jaterní mitochondrie metabolismus MeSH
- játra metabolismus patologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nealkoholová steatóza jater etiologie metabolismus MeSH
- peroxidace lipidů * MeSH
- sukcinátdehydrogenasa metabolismus MeSH
- tuková tkáň metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glutathion MeSH
- sukcinátdehydrogenasa MeSH
Maladaptation of mitochondrial oxidative flux seems to be a considerable feature of nonalcoholic fatty liver disease (NAFLD). The aim of this work was to induce NAFLD in mice fed a Western-style diet (WD) and to evaluate liver mitochondrial functions. Experiments were performed on male C57BL/6J mice fed with a control diet or a WD for 24 weeks. Histological changes in liver and adipose tissue as well as hepatic expression of fibrotic and inflammatory genes and proteins were evaluated. The mitochondrial respiration was assessed by high-resolution respirometry. Oxidative stress was evaluated by measuring lipoperoxidation, glutathione, and reactive oxygen species level. Feeding mice a WD induced adipose tissue inflammation and massive liver steatosis accompanied by mild inflammation and fibrosis. We found decreased succinate-activated mitochondrial respiration and decreased succinate dehydrogenase (SDH) activity in the mice fed a WD. The oxidative flux with other substrates was not affected. We observed increased ketogenic capacity, but no impact on the capacity for fatty acid oxidation. We did not confirm the presence of oxidative stress. Mitochondria in this stage of the disease are adapted to increased substrate flux. However, inhibition of SDH can lead to the accumulation of succinate, an important signaling molecule associated with inflammation, fibrosis, and carcinogenesis.
Zobrazit více v PubMed
Younossi Z.M., Koenig A.B., Abdelatif D., Fazel Y., Henry L., Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73–84. doi: 10.1002/hep.28431. PubMed DOI
Nakagawa H. Recent advances in mouse models of obesity- and nonalcoholic steatohepatitis-associated hepatocarcinogenesis. World J. Hepatol. 2015;7:2110–2118. doi: 10.4254/wjh.v7.i17.2110. PubMed DOI PMC
Machado M.V., Michelotti G.A., Xie G., Almeida Pereira T., Boursier J., Bohnic B., Guy C.D., Diehl A.M. Mouse models of diet-induced nonalcoholic steatohepatitis reproduce the heterogeneity of the human disease. PLoS ONE. 2015;10:e0127991. doi: 10.1371/journal.pone.0127991. PubMed DOI PMC
Abenavoli L., Falalyeyeva T., Boccuto L., Tsyryuk O., Kobyliak N. Obeticholic Acid: A New Era in the Treatment of Nonalcoholic Fatty Liver Disease. Pharmaceuticals. 2018;11:104. doi: 10.3390/ph11040104. PubMed DOI PMC
Melzer K. Carbohydrate and fat utilization during rest and physical activity. SPEN Eur. J. Clin. Nutr. Metab. 2011;6:e45–e52. doi: 10.1016/j.eclnm.2011.01.005. DOI
Muoio D.M. Metabolic inflexibility: When mitochondrial indecision leads to metabolic gridlock. Cell. 2014;159:1253–1262. doi: 10.1016/j.cell.2014.11.034. PubMed DOI PMC
Rutkowski J.M., Stern J.H., Scherer P.E. The cell biology of fat expansion. J. Cell Biol. 2015;208:501–512. doi: 10.1083/jcb.201409063. PubMed DOI PMC
Mansouri A., Gattolliat C.-H., Asselah T. Mitochondrial Dysfunction and Signaling in Chronic Liver Diseases. Gastroenterology. 2018;155:629–647. doi: 10.1053/j.gastro.2018.06.083. PubMed DOI
Ipsen D.H., Lykkesfeldt J., Tveden-Nyborg P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell. Mol. Life Sci. 2018;75:3313–3327. doi: 10.1007/s00018-018-2860-6. PubMed DOI PMC
Sunny N.E., Bril F., Cusi K. Mitochondrial Adaptation in Nonalcoholic Fatty Liver Disease: Novel Mechanisms and Treatment Strategies. Trends Endocrinol. Metab. 2017;28:250–260. doi: 10.1016/j.tem.2016.11.006. PubMed DOI
Panov A., Orynbayeva Z. Determination of mitochondrial metabolic phenotype through investigation of the intrinsic inhibition of succinate dehydrogenase. Anal. Biochem. 2018;552:30–37. doi: 10.1016/j.ab.2017.10.010. PubMed DOI
Parry S.A., Hodson L. Influence of dietary macronutrients on liver fat accumulation and metabolism. J. Investig. Med. 2017;65:1102–1115. doi: 10.1136/jim-2017-000524. PubMed DOI PMC
Hodson L., Rosqvist F., Parry S.A. The influence of dietary fatty acids on liver fat content and metabolism. Proc. Nutr. Soc. 2019;79:30–41. doi: 10.1017/S0029665119000569. PubMed DOI
Luukkonen P.K., Sadevirta S., Zhou Y., Kayser B., Ali A., Ahonen L., Lallukka S., Pelloux V., Gaggini M., Jian C., et al. Saturated Fat Is More Metabolically Harmful for the Human Liver Than Unsaturated Fat or Simple Sugars. Diabetes Care. 2018;41:1732–1739. doi: 10.2337/dc18-0071. PubMed DOI PMC
Legeza B., Marcolongo P., Gamberucci A., Varga V., Banhegyi G., Benedetti A., Odermatt A. Fructose, Glucocorticoids and Adipose Tissue: Implications for the Metabolic Syndrome. Nutrients. 2017;9:426. doi: 10.3390/nu9050426. PubMed DOI PMC
Ibrahim S.H., Hirsova P., Malhi H., Gores G.J. Animal Models of Nonalcoholic Steatohepatitis: Eat, Delete, and Inflame. Dig. Dis. Sci. 2016;61:1325–1336. doi: 10.1007/s10620-015-3977-1. PubMed DOI PMC
Luo Y., Burrington C.M., Graff E.C., Zhang J., Judd R.L., Suksaranjit P., Kaewpoowat Q., Davenport S.K., O’Neill A.M., Greene M.W. Metabolic phenotype and adipose and liver features in a high-fat Western diet-induced mouse model of obesity-linked NAFLD. Am. J. Physiol. Endocrinol. Metab. 2016;310:E418–E439. doi: 10.1152/ajpendo.00319.2015. PubMed DOI PMC
Charlton M., Krishnan A., Viker K., Sanderson S., Cazanave S., McConico A., Masuoko H., Gores G. Fast food diet mouse: Novel small animal model of NASH with ballooning, progressive fibrosis, and high physiological fidelity to the human condition. Am. J. Physiol. Gastrointest. Liver Physiol. 2011;301:G825–G834. doi: 10.1152/ajpgi.00145.2011. PubMed DOI PMC
Stephenson K., Kennedy L., Hargrove L., Demieville J., Thomson J., Alpini G., Francis H. Updates on Dietary Models of Nonalcoholic Fatty Liver Disease: Current Studies and Insights. J. Liver Res. 2018;18:5–17. doi: 10.3727/105221617X15093707969658. PubMed DOI PMC
Ronchi J.A., Figueira T.R., Ravagnani F.G., Oliveira H.C., Vercesi A.E., Castilho R.F. A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities. Free Radic. Biol. Med. 2013;63:446–456. doi: 10.1016/j.freeradbiomed.2013.05.049. PubMed DOI
Krishnan A., Abdullah T.S., Mounajjed T., Hartono S., McConico A., White T., LeBrasseur N., Lanza I., Nair S., Gores G., et al. A longitudinal study of whole body, tissue, and cellular physiology in a mouse model of fibrosing NASH with high fidelity to the human condition. Am. J. Physiol. Gastrointest. Liver Physiol. 2017;312:G666–G680. doi: 10.1152/ajpgi.00213.2016. PubMed DOI PMC
SUIT Reference Protocol. [(accessed on 27 October 2019)]; Available online: https://wiki.oroboros.at/index.php/SUIT_reference_protocol.
Kleiner D.E., Makhlouf H.R. Histology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis in Adults and Children. Clin. Liver Dis. 2016;20:293–312. doi: 10.1016/j.cld.2015.10.011. PubMed DOI PMC
DiMarco J.P., Hoppel C. Hepatic mitochondrial function in ketogenic states. Diabetes, starvation, and after growth hormone administration. J. Clin. Investig. 1975;55:1237–1244. doi: 10.1172/JCI108042. PubMed DOI PMC
Van Beek L., van Klinken J.B., Pronk A.C., van Dam A.D., Dirven E., Rensen P.C., Koning F., Willems van Dijk K., van Harmelen V. The limited storage capacity of gonadal adipose tissue directs the development of metabolic disorders in male C57Bl/6J mice. Diabetologia. 2015;58:1601–1609. doi: 10.1007/s00125-015-3594-8. PubMed DOI PMC
Sunny N.E., Satapati S., Fu X., He T., Mehdibeigi R., Spring-Robinson C., Duarte J., Potthoff M.J., Browning J.D., Burgess S.C. Progressive adaptation of hepatic ketogenesis in mice fed a high-fat diet. Am. J. Physiol. Endocrinol. Metab. 2010;298:E1226–E1235. doi: 10.1152/ajpendo.00033.2010. PubMed DOI PMC
Prentki M., Madiraju S.R. Glycerolipid metabolism and signaling in health and disease. Endocr. Rev. 2008;29:647–676. doi: 10.1210/er.2008-0007. PubMed DOI
Ponziani F.R., Pecere S., Gasbarrini A., Ojetti V. Physiology and pathophysiology of liver lipid metabolism. Expert Rev. Gastroenterol. Hepatol. 2015;9:1055–1067. doi: 10.1586/17474124.2015.1056156. PubMed DOI
Kalliokoski O., Teilmann A.C., Jacobsen K.R., Abelson K.S., Hau J. The lonely mouse—Single housing affects serotonergic signaling integrity measured by 8-OH-DPAT-induced hypothermia in male mice. PLoS ONE. 2014;9:e111065. doi: 10.1371/journal.pone.0111065. PubMed DOI PMC
Kappel S., Hawkins P., Mendl M.T. To Group or Not to Group? Good Practice for Housing Male Laboratory Mice. Animals. 2017;7:88. doi: 10.3390/ani7120088. PubMed DOI PMC
Bailoo J.D., Murphy E., Varholick J.A., Novak J., Palme R., Wurbel H. Evaluation of the effects of space allowance on measures of animal welfare in laboratory mice. Sci. Rep. 2018;8:713. doi: 10.1038/s41598-017-18493-6. PubMed DOI PMC
Nolan C.J., Prentki M. Insulin resistance and insulin hypersecretion in the metabolic syndrome and type 2 diabetes: Time for a conceptual framework shift. Diabetes Vasc. Dis. Res. 2019;16:118–127. doi: 10.1177/1479164119827611. PubMed DOI
Garcia-Ruiz C., Fernandez-Checa J.C. Mitochondrial Oxidative Stress and Antioxidants Balance in Fatty Liver Disease. Hepatol. Commun. 2018;2:1425–1439. doi: 10.1002/hep4.1271. PubMed DOI PMC
Sumida Y., Niki E., Naito Y., Yoshikawa T. Involvement of free radicals and oxidative stress in NAFLD/NASH. Free Radic. Res. 2013;47:869–880. doi: 10.3109/10715762.2013.837577. PubMed DOI
Koliaki C., Szendroedi J., Kaul K., Jelenik T., Nowotny P., Jankowiak F., Herder C., Carstensen M., Krausch M., Knoefel W.T., et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab. 2015;21:739–746. doi: 10.1016/j.cmet.2015.04.004. PubMed DOI
Holmstrom M.H., Iglesias-Gutierrez E., Zierath J.R., Garcia-Roves P.M. Tissue-specific control of mitochondrial respiration in obesity-related insulin resistance and diabetes. Am. J. Physiol. Endocrinol. Metab. 2012;302:E731–E739. doi: 10.1152/ajpendo.00159.2011. PubMed DOI
Li Y.H., Woo S.H., Choi D.H., Cho E.H. Succinate causes alpha-SMA production through GPR91 activation in hepatic stellate cells. Biochem. Biophys. Res. Commun. 2015;463:853–858. doi: 10.1016/j.bbrc.2015.06.023. PubMed DOI
Han D., Johnson H.S., Rao M.P., Martin G., Sancheti H., Silkwood K.H., Decker C.W., Nguyen K.T., Casian J.G., Cadenas E., et al. Mitochondrial remodeling in the liver following chronic alcohol feeding to rats. Free Radic. Biol. Med. 2017;102:100–110. doi: 10.1016/j.freeradbiomed.2016.11.020. PubMed DOI PMC
Tretter L., Patocs A., Chinopoulos C. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim. Biophys. Acta (BBA)-Bioenerg. 2016;1857:1086–1101. doi: 10.1016/j.bbabio.2016.03.012. PubMed DOI
Drose S. Differential effects of complex II on mitochondrial ROS production and their relation to cardioprotective pre- and postconditioning. Biochim. Biophys. Acta (BBA)-Bioenerg. 2013;1827:578–587. doi: 10.1016/j.bbabio.2013.01.004. PubMed DOI
Bezawork-Geleta A., Rohlena J., Dong L., Pacak K., Neuzil J. Mitochondrial Complex II: At the Crossroads. Trends Biochem. Sci. 2017;42:312–325. doi: 10.1016/j.tibs.2017.01.003. PubMed DOI PMC
Kappler L., Hoene M., Hu C., von Toerne C., Li J., Bleher D., Hoffmann C., Bohm A., Kollipara L., Zischka H., et al. Linking bioenergetic function of mitochondria to tissue-specific molecular fingerprints. Am. J. Physiol. Endocrinol. Metab. 2019;317:E374–E387. doi: 10.1152/ajpendo.00088.2019. PubMed DOI
Ralph S.J., Moreno-Sanchez R., Neuzil J., Rodriguez-Enriquez S. Inhibitors of succinate: Quinone reductase/Complex II regulate production of mitochondrial reactive oxygen species and protect normal cells from ischemic damage but induce specific cancer cell death. Pharm. Res. 2011;28:2695–2730. doi: 10.1007/s11095-011-0566-7. PubMed DOI
Quinlan C.L., Orr A.L., Perevoshchikova I.V., Treberg J.R., Ackrell B.A., Brand M.D. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J. Biol. Chem. 2012;287:27255–27264. doi: 10.1074/jbc.M112.374629. PubMed DOI PMC
Robb E.L., Hall A.R., Prime T.A., Eaton S., Szibor M., Viscomi C., James A.M., Murphy M.P. Control of mitochondrial superoxide production by reverse electron transport at complex I. J. Biol. Chem. 2018;293:9869–9879. doi: 10.1074/jbc.RA118.003647. PubMed DOI PMC
Meyer J.G., Softic S., Basisty N., Rardin M.J., Verdin E., Gibson B.W., Ilkayeva O., Newgard C.B., Kahn C.R., Schilling B. Temporal dynamics of liver mitochondrial protein acetylation and succinylation and metabolites due to high fat diet and/or excess glucose or fructose. PLoS ONE. 2018;13:e0208973. doi: 10.1371/journal.pone.0208973. PubMed DOI PMC
Serena C., Ceperuelo-Mallafre V., Keiran N., Queipo-Ortuno M.I., Bernal R., Gomez-Huelgas R., Urpi-Sarda M., Sabater M., Perez-Brocal V., Andres-Lacueva C., et al. Elevated circulating levels of succinate in human obesity are linked to specific gut microbiota. ISME J. 2018;12:1642–1657. doi: 10.1038/s41396-018-0068-2. PubMed DOI PMC
Schofield Z., Reed M.A., Newsome P.N., Adams D.H., Gunther U.L., Lalor P.F. Changes in human hepatic metabolism in steatosis and cirrhosis. World J. Gastroenterol. 2017;23:2685–2695. doi: 10.3748/wjg.v23.i15.2685. PubMed DOI PMC
Satapati S., Sunny N.E., Kucejova B., Fu X., He T.T., Mendez-Lucas A., Shelton J.M., Perales J.C., Browning J.D., Burgess S.C. Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver. J. Lipid Res. 2012;53:1080–1092. doi: 10.1194/jlr.M023382. PubMed DOI PMC
Cotter D.G., Ercal B., Huang X., Leid J.M., D’Avignon D.A., Graham M.J., Dietzen D.J., Brunt E.M., Patti G.J., Crawford P.A. Ketogenesis prevents diet-induced fatty liver injury and hyperglycemia. J. Clin. Investig. 2014;124:5175–5190. doi: 10.1172/JCI76388. PubMed DOI PMC
Mannisto V.T., Simonen M., Hyysalo J., Soininen P., Kangas A.J., Kaminska D., Matte A.K., Venesmaa S., Kakela P., Karja V., et al. Ketone body production is differentially altered in steatosis and non-alcoholic steatohepatitis in obese humans. Liver Int. 2015;35:1853–1861. doi: 10.1111/liv.12769. PubMed DOI
Vice E., Privette J.D., Hickner R.C., Barakat H.A. Ketone body metabolism in lean and obese women. Metabolism. 2005;54:1542–1545. doi: 10.1016/j.metabol.2005.05.023. PubMed DOI
Fletcher J.A., Deja S., Satapati S., Fu X., Burgess S.C., Browning J.D. Impaired ketogenesis and increased acetyl-CoA oxidation promote hyperglycemia in human fatty liver. JCI Insight. 2019 doi: 10.1172/jci.insight.127737. PubMed DOI PMC
Abdurrachim D., Woo C.C., Teo X.Q., Chan W.X., Radda G.K., Lee P.T.H. A new hyperpolarized 13C ketone body probe reveals an increase in acetoacetate utilization in the diabetic rat heart. Sci. Rep. 2019;9:1–13. doi: 10.1038/s41598-019-39378-w. PubMed DOI PMC
Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959;37:911–917. doi: 10.1139/o59-099. PubMed DOI
Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Smith P.K., Krohn R.I., Hermanson G.T., Mallia A.K., Gartner F.H., Provenzano M.D., Fujimoto E.K., Goeke N.M., Olson B.J., Klenk D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985;150:76–85. doi: 10.1016/0003-2697(85)90442-7. PubMed DOI
Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987;162:156–159. doi: 10.1016/0003-2697(87)90021-2. PubMed DOI
Ohkawa H., Ohishi N., Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979;95:351–358. doi: 10.1016/0003-2697(79)90738-3. PubMed DOI
Kand’ar R., Zakova P., Lotkova H., Kucera O., Cervinkova Z. Determination of reduced and oxidized glutathione in biological samples using liquid chromatography with fluorimetric detection. J. Pharm. Biomed. Anal. 2007;43:1382–1387. doi: 10.1016/j.jpba.2006.11.028. PubMed DOI
Kucera O., Rousar T., Stankova P., Hanackova L., Lotkova H., Podhola M., Cervinkova Z. Susceptibility of rat non-alcoholic fatty liver to the acute toxic effect of acetaminophen. J. Gastroenterol. Hepatol. 2012;27:323–330. doi: 10.1111/j.1440-1746.2011.06807.x. PubMed DOI
Gnaiger E., Aasander Frostner E., Abdul Karim N., Abdel-Rahman E.A., Abumrad N.A., Acuna-Castroviejo D., Adiele R.C., Amati F. Mitochondrial respiratory states and rates. MitoFit Prepr. Arch. 2019 doi: 10.26124/mitofit:190001.v2. DOI
Hartwig S., Kotzka J., Lehr S. Isolation and quality control of functional mitochondria. Methods Mol. Biol. 2015;1264:9–23. PubMed