Adaptation of Mitochondrial Substrate Flux in a Mouse Model of Nonalcoholic Fatty Liver Disease

. 2020 Feb 07 ; 21 (3) : . [epub] 20200207

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32046101

Grantová podpora
Inter-Cost LTC17044 MŠMT, ČR
PROGRES Q40/02 Univerzita Karlova

Maladaptation of mitochondrial oxidative flux seems to be a considerable feature of nonalcoholic fatty liver disease (NAFLD). The aim of this work was to induce NAFLD in mice fed a Western-style diet (WD) and to evaluate liver mitochondrial functions. Experiments were performed on male C57BL/6J mice fed with a control diet or a WD for 24 weeks. Histological changes in liver and adipose tissue as well as hepatic expression of fibrotic and inflammatory genes and proteins were evaluated. The mitochondrial respiration was assessed by high-resolution respirometry. Oxidative stress was evaluated by measuring lipoperoxidation, glutathione, and reactive oxygen species level. Feeding mice a WD induced adipose tissue inflammation and massive liver steatosis accompanied by mild inflammation and fibrosis. We found decreased succinate-activated mitochondrial respiration and decreased succinate dehydrogenase (SDH) activity in the mice fed a WD. The oxidative flux with other substrates was not affected. We observed increased ketogenic capacity, but no impact on the capacity for fatty acid oxidation. We did not confirm the presence of oxidative stress. Mitochondria in this stage of the disease are adapted to increased substrate flux. However, inhibition of SDH can lead to the accumulation of succinate, an important signaling molecule associated with inflammation, fibrosis, and carcinogenesis.

Zobrazit více v PubMed

Younossi Z.M., Koenig A.B., Abdelatif D., Fazel Y., Henry L., Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73–84. doi: 10.1002/hep.28431. PubMed DOI

Nakagawa H. Recent advances in mouse models of obesity- and nonalcoholic steatohepatitis-associated hepatocarcinogenesis. World J. Hepatol. 2015;7:2110–2118. doi: 10.4254/wjh.v7.i17.2110. PubMed DOI PMC

Machado M.V., Michelotti G.A., Xie G., Almeida Pereira T., Boursier J., Bohnic B., Guy C.D., Diehl A.M. Mouse models of diet-induced nonalcoholic steatohepatitis reproduce the heterogeneity of the human disease. PLoS ONE. 2015;10:e0127991. doi: 10.1371/journal.pone.0127991. PubMed DOI PMC

Abenavoli L., Falalyeyeva T., Boccuto L., Tsyryuk O., Kobyliak N. Obeticholic Acid: A New Era in the Treatment of Nonalcoholic Fatty Liver Disease. Pharmaceuticals. 2018;11:104. doi: 10.3390/ph11040104. PubMed DOI PMC

Melzer K. Carbohydrate and fat utilization during rest and physical activity. SPEN Eur. J. Clin. Nutr. Metab. 2011;6:e45–e52. doi: 10.1016/j.eclnm.2011.01.005. DOI

Muoio D.M. Metabolic inflexibility: When mitochondrial indecision leads to metabolic gridlock. Cell. 2014;159:1253–1262. doi: 10.1016/j.cell.2014.11.034. PubMed DOI PMC

Rutkowski J.M., Stern J.H., Scherer P.E. The cell biology of fat expansion. J. Cell Biol. 2015;208:501–512. doi: 10.1083/jcb.201409063. PubMed DOI PMC

Mansouri A., Gattolliat C.-H., Asselah T. Mitochondrial Dysfunction and Signaling in Chronic Liver Diseases. Gastroenterology. 2018;155:629–647. doi: 10.1053/j.gastro.2018.06.083. PubMed DOI

Ipsen D.H., Lykkesfeldt J., Tveden-Nyborg P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell. Mol. Life Sci. 2018;75:3313–3327. doi: 10.1007/s00018-018-2860-6. PubMed DOI PMC

Sunny N.E., Bril F., Cusi K. Mitochondrial Adaptation in Nonalcoholic Fatty Liver Disease: Novel Mechanisms and Treatment Strategies. Trends Endocrinol. Metab. 2017;28:250–260. doi: 10.1016/j.tem.2016.11.006. PubMed DOI

Panov A., Orynbayeva Z. Determination of mitochondrial metabolic phenotype through investigation of the intrinsic inhibition of succinate dehydrogenase. Anal. Biochem. 2018;552:30–37. doi: 10.1016/j.ab.2017.10.010. PubMed DOI

Parry S.A., Hodson L. Influence of dietary macronutrients on liver fat accumulation and metabolism. J. Investig. Med. 2017;65:1102–1115. doi: 10.1136/jim-2017-000524. PubMed DOI PMC

Hodson L., Rosqvist F., Parry S.A. The influence of dietary fatty acids on liver fat content and metabolism. Proc. Nutr. Soc. 2019;79:30–41. doi: 10.1017/S0029665119000569. PubMed DOI

Luukkonen P.K., Sadevirta S., Zhou Y., Kayser B., Ali A., Ahonen L., Lallukka S., Pelloux V., Gaggini M., Jian C., et al. Saturated Fat Is More Metabolically Harmful for the Human Liver Than Unsaturated Fat or Simple Sugars. Diabetes Care. 2018;41:1732–1739. doi: 10.2337/dc18-0071. PubMed DOI PMC

Legeza B., Marcolongo P., Gamberucci A., Varga V., Banhegyi G., Benedetti A., Odermatt A. Fructose, Glucocorticoids and Adipose Tissue: Implications for the Metabolic Syndrome. Nutrients. 2017;9:426. doi: 10.3390/nu9050426. PubMed DOI PMC

Ibrahim S.H., Hirsova P., Malhi H., Gores G.J. Animal Models of Nonalcoholic Steatohepatitis: Eat, Delete, and Inflame. Dig. Dis. Sci. 2016;61:1325–1336. doi: 10.1007/s10620-015-3977-1. PubMed DOI PMC

Luo Y., Burrington C.M., Graff E.C., Zhang J., Judd R.L., Suksaranjit P., Kaewpoowat Q., Davenport S.K., O’Neill A.M., Greene M.W. Metabolic phenotype and adipose and liver features in a high-fat Western diet-induced mouse model of obesity-linked NAFLD. Am. J. Physiol. Endocrinol. Metab. 2016;310:E418–E439. doi: 10.1152/ajpendo.00319.2015. PubMed DOI PMC

Charlton M., Krishnan A., Viker K., Sanderson S., Cazanave S., McConico A., Masuoko H., Gores G. Fast food diet mouse: Novel small animal model of NASH with ballooning, progressive fibrosis, and high physiological fidelity to the human condition. Am. J. Physiol. Gastrointest. Liver Physiol. 2011;301:G825–G834. doi: 10.1152/ajpgi.00145.2011. PubMed DOI PMC

Stephenson K., Kennedy L., Hargrove L., Demieville J., Thomson J., Alpini G., Francis H. Updates on Dietary Models of Nonalcoholic Fatty Liver Disease: Current Studies and Insights. J. Liver Res. 2018;18:5–17. doi: 10.3727/105221617X15093707969658. PubMed DOI PMC

Ronchi J.A., Figueira T.R., Ravagnani F.G., Oliveira H.C., Vercesi A.E., Castilho R.F. A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities. Free Radic. Biol. Med. 2013;63:446–456. doi: 10.1016/j.freeradbiomed.2013.05.049. PubMed DOI

Krishnan A., Abdullah T.S., Mounajjed T., Hartono S., McConico A., White T., LeBrasseur N., Lanza I., Nair S., Gores G., et al. A longitudinal study of whole body, tissue, and cellular physiology in a mouse model of fibrosing NASH with high fidelity to the human condition. Am. J. Physiol. Gastrointest. Liver Physiol. 2017;312:G666–G680. doi: 10.1152/ajpgi.00213.2016. PubMed DOI PMC

SUIT Reference Protocol. [(accessed on 27 October 2019)]; Available online: https://wiki.oroboros.at/index.php/SUIT_reference_protocol.

Kleiner D.E., Makhlouf H.R. Histology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis in Adults and Children. Clin. Liver Dis. 2016;20:293–312. doi: 10.1016/j.cld.2015.10.011. PubMed DOI PMC

DiMarco J.P., Hoppel C. Hepatic mitochondrial function in ketogenic states. Diabetes, starvation, and after growth hormone administration. J. Clin. Investig. 1975;55:1237–1244. doi: 10.1172/JCI108042. PubMed DOI PMC

Van Beek L., van Klinken J.B., Pronk A.C., van Dam A.D., Dirven E., Rensen P.C., Koning F., Willems van Dijk K., van Harmelen V. The limited storage capacity of gonadal adipose tissue directs the development of metabolic disorders in male C57Bl/6J mice. Diabetologia. 2015;58:1601–1609. doi: 10.1007/s00125-015-3594-8. PubMed DOI PMC

Sunny N.E., Satapati S., Fu X., He T., Mehdibeigi R., Spring-Robinson C., Duarte J., Potthoff M.J., Browning J.D., Burgess S.C. Progressive adaptation of hepatic ketogenesis in mice fed a high-fat diet. Am. J. Physiol. Endocrinol. Metab. 2010;298:E1226–E1235. doi: 10.1152/ajpendo.00033.2010. PubMed DOI PMC

Prentki M., Madiraju S.R. Glycerolipid metabolism and signaling in health and disease. Endocr. Rev. 2008;29:647–676. doi: 10.1210/er.2008-0007. PubMed DOI

Ponziani F.R., Pecere S., Gasbarrini A., Ojetti V. Physiology and pathophysiology of liver lipid metabolism. Expert Rev. Gastroenterol. Hepatol. 2015;9:1055–1067. doi: 10.1586/17474124.2015.1056156. PubMed DOI

Kalliokoski O., Teilmann A.C., Jacobsen K.R., Abelson K.S., Hau J. The lonely mouse—Single housing affects serotonergic signaling integrity measured by 8-OH-DPAT-induced hypothermia in male mice. PLoS ONE. 2014;9:e111065. doi: 10.1371/journal.pone.0111065. PubMed DOI PMC

Kappel S., Hawkins P., Mendl M.T. To Group or Not to Group? Good Practice for Housing Male Laboratory Mice. Animals. 2017;7:88. doi: 10.3390/ani7120088. PubMed DOI PMC

Bailoo J.D., Murphy E., Varholick J.A., Novak J., Palme R., Wurbel H. Evaluation of the effects of space allowance on measures of animal welfare in laboratory mice. Sci. Rep. 2018;8:713. doi: 10.1038/s41598-017-18493-6. PubMed DOI PMC

Nolan C.J., Prentki M. Insulin resistance and insulin hypersecretion in the metabolic syndrome and type 2 diabetes: Time for a conceptual framework shift. Diabetes Vasc. Dis. Res. 2019;16:118–127. doi: 10.1177/1479164119827611. PubMed DOI

Garcia-Ruiz C., Fernandez-Checa J.C. Mitochondrial Oxidative Stress and Antioxidants Balance in Fatty Liver Disease. Hepatol. Commun. 2018;2:1425–1439. doi: 10.1002/hep4.1271. PubMed DOI PMC

Sumida Y., Niki E., Naito Y., Yoshikawa T. Involvement of free radicals and oxidative stress in NAFLD/NASH. Free Radic. Res. 2013;47:869–880. doi: 10.3109/10715762.2013.837577. PubMed DOI

Koliaki C., Szendroedi J., Kaul K., Jelenik T., Nowotny P., Jankowiak F., Herder C., Carstensen M., Krausch M., Knoefel W.T., et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab. 2015;21:739–746. doi: 10.1016/j.cmet.2015.04.004. PubMed DOI

Holmstrom M.H., Iglesias-Gutierrez E., Zierath J.R., Garcia-Roves P.M. Tissue-specific control of mitochondrial respiration in obesity-related insulin resistance and diabetes. Am. J. Physiol. Endocrinol. Metab. 2012;302:E731–E739. doi: 10.1152/ajpendo.00159.2011. PubMed DOI

Li Y.H., Woo S.H., Choi D.H., Cho E.H. Succinate causes alpha-SMA production through GPR91 activation in hepatic stellate cells. Biochem. Biophys. Res. Commun. 2015;463:853–858. doi: 10.1016/j.bbrc.2015.06.023. PubMed DOI

Han D., Johnson H.S., Rao M.P., Martin G., Sancheti H., Silkwood K.H., Decker C.W., Nguyen K.T., Casian J.G., Cadenas E., et al. Mitochondrial remodeling in the liver following chronic alcohol feeding to rats. Free Radic. Biol. Med. 2017;102:100–110. doi: 10.1016/j.freeradbiomed.2016.11.020. PubMed DOI PMC

Tretter L., Patocs A., Chinopoulos C. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim. Biophys. Acta (BBA)-Bioenerg. 2016;1857:1086–1101. doi: 10.1016/j.bbabio.2016.03.012. PubMed DOI

Drose S. Differential effects of complex II on mitochondrial ROS production and their relation to cardioprotective pre- and postconditioning. Biochim. Biophys. Acta (BBA)-Bioenerg. 2013;1827:578–587. doi: 10.1016/j.bbabio.2013.01.004. PubMed DOI

Bezawork-Geleta A., Rohlena J., Dong L., Pacak K., Neuzil J. Mitochondrial Complex II: At the Crossroads. Trends Biochem. Sci. 2017;42:312–325. doi: 10.1016/j.tibs.2017.01.003. PubMed DOI PMC

Kappler L., Hoene M., Hu C., von Toerne C., Li J., Bleher D., Hoffmann C., Bohm A., Kollipara L., Zischka H., et al. Linking bioenergetic function of mitochondria to tissue-specific molecular fingerprints. Am. J. Physiol. Endocrinol. Metab. 2019;317:E374–E387. doi: 10.1152/ajpendo.00088.2019. PubMed DOI

Ralph S.J., Moreno-Sanchez R., Neuzil J., Rodriguez-Enriquez S. Inhibitors of succinate: Quinone reductase/Complex II regulate production of mitochondrial reactive oxygen species and protect normal cells from ischemic damage but induce specific cancer cell death. Pharm. Res. 2011;28:2695–2730. doi: 10.1007/s11095-011-0566-7. PubMed DOI

Quinlan C.L., Orr A.L., Perevoshchikova I.V., Treberg J.R., Ackrell B.A., Brand M.D. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J. Biol. Chem. 2012;287:27255–27264. doi: 10.1074/jbc.M112.374629. PubMed DOI PMC

Robb E.L., Hall A.R., Prime T.A., Eaton S., Szibor M., Viscomi C., James A.M., Murphy M.P. Control of mitochondrial superoxide production by reverse electron transport at complex I. J. Biol. Chem. 2018;293:9869–9879. doi: 10.1074/jbc.RA118.003647. PubMed DOI PMC

Meyer J.G., Softic S., Basisty N., Rardin M.J., Verdin E., Gibson B.W., Ilkayeva O., Newgard C.B., Kahn C.R., Schilling B. Temporal dynamics of liver mitochondrial protein acetylation and succinylation and metabolites due to high fat diet and/or excess glucose or fructose. PLoS ONE. 2018;13:e0208973. doi: 10.1371/journal.pone.0208973. PubMed DOI PMC

Serena C., Ceperuelo-Mallafre V., Keiran N., Queipo-Ortuno M.I., Bernal R., Gomez-Huelgas R., Urpi-Sarda M., Sabater M., Perez-Brocal V., Andres-Lacueva C., et al. Elevated circulating levels of succinate in human obesity are linked to specific gut microbiota. ISME J. 2018;12:1642–1657. doi: 10.1038/s41396-018-0068-2. PubMed DOI PMC

Schofield Z., Reed M.A., Newsome P.N., Adams D.H., Gunther U.L., Lalor P.F. Changes in human hepatic metabolism in steatosis and cirrhosis. World J. Gastroenterol. 2017;23:2685–2695. doi: 10.3748/wjg.v23.i15.2685. PubMed DOI PMC

Satapati S., Sunny N.E., Kucejova B., Fu X., He T.T., Mendez-Lucas A., Shelton J.M., Perales J.C., Browning J.D., Burgess S.C. Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver. J. Lipid Res. 2012;53:1080–1092. doi: 10.1194/jlr.M023382. PubMed DOI PMC

Cotter D.G., Ercal B., Huang X., Leid J.M., D’Avignon D.A., Graham M.J., Dietzen D.J., Brunt E.M., Patti G.J., Crawford P.A. Ketogenesis prevents diet-induced fatty liver injury and hyperglycemia. J. Clin. Investig. 2014;124:5175–5190. doi: 10.1172/JCI76388. PubMed DOI PMC

Mannisto V.T., Simonen M., Hyysalo J., Soininen P., Kangas A.J., Kaminska D., Matte A.K., Venesmaa S., Kakela P., Karja V., et al. Ketone body production is differentially altered in steatosis and non-alcoholic steatohepatitis in obese humans. Liver Int. 2015;35:1853–1861. doi: 10.1111/liv.12769. PubMed DOI

Vice E., Privette J.D., Hickner R.C., Barakat H.A. Ketone body metabolism in lean and obese women. Metabolism. 2005;54:1542–1545. doi: 10.1016/j.metabol.2005.05.023. PubMed DOI

Fletcher J.A., Deja S., Satapati S., Fu X., Burgess S.C., Browning J.D. Impaired ketogenesis and increased acetyl-CoA oxidation promote hyperglycemia in human fatty liver. JCI Insight. 2019 doi: 10.1172/jci.insight.127737. PubMed DOI PMC

Abdurrachim D., Woo C.C., Teo X.Q., Chan W.X., Radda G.K., Lee P.T.H. A new hyperpolarized 13C ketone body probe reveals an increase in acetoacetate utilization in the diabetic rat heart. Sci. Rep. 2019;9:1–13. doi: 10.1038/s41598-019-39378-w. PubMed DOI PMC

Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959;37:911–917. doi: 10.1139/o59-099. PubMed DOI

Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI

Smith P.K., Krohn R.I., Hermanson G.T., Mallia A.K., Gartner F.H., Provenzano M.D., Fujimoto E.K., Goeke N.M., Olson B.J., Klenk D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985;150:76–85. doi: 10.1016/0003-2697(85)90442-7. PubMed DOI

Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987;162:156–159. doi: 10.1016/0003-2697(87)90021-2. PubMed DOI

Ohkawa H., Ohishi N., Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979;95:351–358. doi: 10.1016/0003-2697(79)90738-3. PubMed DOI

Kand’ar R., Zakova P., Lotkova H., Kucera O., Cervinkova Z. Determination of reduced and oxidized glutathione in biological samples using liquid chromatography with fluorimetric detection. J. Pharm. Biomed. Anal. 2007;43:1382–1387. doi: 10.1016/j.jpba.2006.11.028. PubMed DOI

Kucera O., Rousar T., Stankova P., Hanackova L., Lotkova H., Podhola M., Cervinkova Z. Susceptibility of rat non-alcoholic fatty liver to the acute toxic effect of acetaminophen. J. Gastroenterol. Hepatol. 2012;27:323–330. doi: 10.1111/j.1440-1746.2011.06807.x. PubMed DOI

Gnaiger E., Aasander Frostner E., Abdul Karim N., Abdel-Rahman E.A., Abumrad N.A., Acuna-Castroviejo D., Adiele R.C., Amati F. Mitochondrial respiratory states and rates. MitoFit Prepr. Arch. 2019 doi: 10.26124/mitofit:190001.v2. DOI

Hartwig S., Kotzka J., Lehr S. Isolation and quality control of functional mitochondria. Methods Mol. Biol. 2015;1264:9–23. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...