The Effect of Infrared Drying on Color, Projected Area, Drying Time, and Total Phenolic Content of Rose (Rose electron) Petals
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.2.69/0.0/0.0/16_027/0008366
EU, Managing Authority of the Czech Operational Programme Research, Development and Education", and "The APC was funded by the project "supporting the development of international mobility of research staff at CULS Prague
PubMed
32059407
PubMed Central
PMC7076444
DOI
10.3390/plants9020236
PII: plants9020236
Knihovny.cz E-zdroje
- Klíčová slova
- drying process, infrared drying, rose petals, total phenolic content,
- Publikační typ
- časopisecké články MeSH
The effects of different drying temperatures (50, 60, 70 °C) on the quality of rose (Rose electron) petals were evaluated in this study. Drying time decreased from 1680 s to 600 s with increased infrared temperature. The temperature and time were increased from 50 °C to 70 °C and 30 min to 60 min, respectively, and a decrease in the fruit color quality was observed. The projected area (PA) of rose petals was affected significantly from temperature. After the drying process, the largest PA was observed as 33.35 cm2 (50 °C, 30 min), while the smallest achieved at 70 °C, 60 min (27.96 cm2). Depending on the temperature values (50, 60, 70 °C), the average projection area of dry samples of the rose petals decreased 2.17 times compared to the projection area of fresh samples. The dried samples demonstrated an increase in the total phenolic (TP) content compared to the fresh samples. The maximum TP (44.49 mg GAE/g) was achieved at 45 min and 70 °C rose petals sample. The results concluded that infrared drying for 45 min at 70 °C could be recommended for drying rose (rosa electron) petals.
Zobrazit více v PubMed
Ercişli S. Rose (Rosa spp.) germplasm resources of Turkey. Genet. Resour. Crop E. 2005;52:787–795. doi: 10.1007/s10722-003-3467-8. DOI
Swamy G., Chandan K., Naik K.B., Prashanth S.J., Nataraj S.K., Sreenivasalu G.B. Comparison of different methods of drying in rose cv. GLADIATOR. Asian Sci. 2009;4:1–3.
Hummer K., Janick J. Rosaceae: Taxonomy, Economic Importance, Genomics. In: Folta K.M., Gardiner S.E., editors. Genetics and Genomics of Rosaceae. Springer; New York, NY, USA: 2009.
Bendahmane M., Dubois A., Raymond O., Le Bris M. Genetics and genomics of flower initiation and development in roses. J. Exp. Bot. 2013;64:847–857. doi: 10.1093/jxb/ers387. PubMed DOI PMC
Dilay K., Çağındı Ö. Determination of antioxidant properties of dry rose tea. Int. J. Sec. Metab. 2017;4:384–390.
Sharmaa S., Kumara R. Effect of temperature and storage duration of flowers on essential oilcontent and composition of damask rose (Rosa × damascena Mill.) under western Himalayas. J. Appl. Res. Med. Aromat. Plants. 2015;3:10–17.
Jabbarzadeh Z., Khui M.K. Factors affecting tissue culture of Damask rose (Rosa damascena Mill.) Sci. Hortic. 2005;105:475–482. doi: 10.1016/j.scienta.2005.02.014. DOI
Choi J.K., Lee Y.B., Lee K.H., Im H.C., Kim Y.B., Choi E.K., Joo S.S., Jang S.K., Han N.S., Chung H.K. Extraction conditions for phenolic compounds with antioxidant activities from white rose petals. J. Appl. Biol. Chem. 2015;58:117–124. doi: 10.3839/jabc.2015.021. DOI
Güneş E. Turkey rose oil production and marketing: A review on problem and opportunities. J. Appl. Sci. 2005;5:1871–1875.
Erbaş S., Baydar H. Variation in scent compounds of oil-bearing rose (Rosa damascena mill.) produced by headspace solid phase microextraction, hydrodistillation and solvent extraction. Rec. Nat. Prod. 2016;10:555–565.
Bintory M.A., Seetharamu G.K., Munikrishnappa P.M., Ramegowda G.K., Basavaraj G. Evaluation of the colour of dried dutch rose flowers using a colorimeter. J. Hortic. 2015;2:1–3.
Köksal N., Aslancan H., Sadighazadi S., Kafkas E. Chemical investigation on rose damascena mill. Volatiles; effects of storage and drying conditions. Acta Sci. Pol. Hortorum Cultus. 2015;14:105–114.
Kramer A. Evaluation of quality of fruits and vegetables. In: Irving G.W. Jr., Hoover S.R., editors. Food Quality. American Association for the Advancement of Science; Washington, DC, USA: 1965. pp. 9–18.
Chen W., Gast K.L.B., Smithey S. The effects of different freeze-driying of process on the moisture content, color and physical strength roses and carnarions. Sci. Hortic. 2000;84:321–332. doi: 10.1016/S0304-4238(99)00106-5. DOI
Du C., Sun D. Recent developments in the applications of image processing techniques for food quality evaluation. Trends Food Sci. Technol. 2004;15:230–249. doi: 10.1016/j.tifs.2003.10.006. DOI
Leo’n K., Mery D., Pedreschi F., Leo’n J. Color measurement in L*a*b* units from RGB digital images. Food Res. Int. 2006;39:1084–1091. doi: 10.1016/j.foodres.2006.03.006. DOI
Pathare P.B., Opara U.L., Fahad A.S. A colour measurement and analysis in fresh and processed foods: A review. Food Bioprocess Technol. 2013;6:36–60. doi: 10.1007/s11947-012-0867-9. DOI
Adak N., Heybeli N., Ertekin C. Infrared drying of strawberry. Food Chem. 2017;219:109–116. doi: 10.1016/j.foodchem.2016.09.103. PubMed DOI
Soysal Y., Öztekin S. Comparison of seven equilibrium moisture content equations for some medicinal and aromatic plants. J. Agric. Eng. Res. 2001;78:57–63. doi: 10.1006/jaer.2000.0636. DOI
Pawar S.B., Pratape V.M. Fundamentals of infrared heating and its application in drying of food materials: A Review. J. Food Process. Eng. 2017;40:1–15. doi: 10.1111/jfpe.12308. DOI
Chen Q., Binqin J., Wu X., Yi J., Zhou L., Zhou Y. Drying kinetics and quality attributes of jujube (Zizyphus jujuba Miller) slices dried by hot-air and short- and medium-wave infrared radiation. LWT-Food Sci. Technol. 2015;64:759–766. doi: 10.1016/j.lwt.2015.06.071. DOI
Lao Y., Zhanga M., Chitrakar B., Bhandari B., Fan D. Efficient plant foods processing based on infrared heating. Food Rev. Int. 2019;35:640–663. doi: 10.1080/87559129.2019.1600537. DOI
Rastogi N.K. Recent trends and developments in infrared heating in food processing. Crit. Rev. Food Sci. Nutr. 2012;52:737–760. doi: 10.1080/10408398.2010.508138. PubMed DOI
Ertekin C., Heybeli N. Thin-layer infrared drying of mint leaves. J. Food Process. Preserv. 2014;38:1480–1490. doi: 10.1111/jfpp.12107. DOI
Riadh M.H., Ahmad S.A.B., Marhaban M.H., Soh A.C. Infrared Heating in Food Drying: An Overview. Dry. Technol. 2015;33:322–335. doi: 10.1080/07373937.2014.951124. DOI
Balladin D.A., Headley O. Solar drying of rose (Rosa sp.) petals. Renew Energy. 1999;18:249–255. doi: 10.1016/S0960-1481(98)00765-4. DOI
Banakar A., Akandi S.R.K. Genetic algorithm optimizing approach in rosa petals hot air dryer. Int. J. Agric. Food Sci. 2012;2:60–65.
Song C., Qin Y., Chen X., Zhou L., Zhu F. Experiments on microwave vacuum drying of rose. Trans. Chin. Soc. Agric. Eng. 2011;27:389–392.
Soysal Y., Öztekin S., Eren Ö. Microwave drying kinetics of thyme. Poljoprivredna Tehnika. 2005;2:69–78.
Igathinathane C., Pordesimo L.O., Batchelor W.D. Major orthogonal dimensions measurement of food grains by machine vision using ImageJ. Food Res. Int. 2009;42:76–84. doi: 10.1016/j.foodres.2008.08.013. DOI
Juneau K.J., Tarasoff C.S. Leaf area and water content changes after permanent and temporary storage. PLoS ONE. 2012;7:e42604. doi: 10.1371/journal.pone.0042604. PubMed DOI PMC
Easlon H.M., Bloom A.J. Easy leaf area: Automated digital image analysis for rapid and accurate measurement of leaf area. Appl. Plant Sci. 2014;2:1–4. doi: 10.3732/apps.1400033. PubMed DOI PMC
Rusalepp L., Raal A., Pussa T., Maerog U. Comparison of chemical composition of Hypericum perforatum and H. maculatum in Estonia. Biochem. Syst. Ecol. 2017;73:41–46. doi: 10.1016/j.bse.2017.06.004. DOI
Singleton V.L., Orthofer R., Lamuela-Raventós R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1998;299:152–178.
Önder H. Nonparametric statistical methods used in biological experiments yöntemler. BSJ Eng. Sci. 2018;1:1–6.
Genç S., Soysal M.I. Parametric and nonparametric post hoc tests. BSJ Eng. Sci. 2018;1:18–27.
Pekke M.A., Pan Z., Atungulu G.G., Smith G., Thompson J.F. Drying characteristics and quality of bananas under infrared radiation heating. Int. J. Agric. Biol. Eng. 2013;6:58–70.
Sadin R., Chegini G.R., Khodadadi M. Development and performance evaluation of a combined infrared and hot air dryer. J. Biol. Environ. Sci. 2014;8:11–18.
Deng L.Z., Yang X.H., Mujumdar A.S., Zhao J.H., Wang D., Zhang Q., Wang J., Gao Z.J., Xiao H.W. Red pepper (Capsicum annuum L.) drying: Effects of different drying methods on drying kinetics, physicochemical properties, antioxidant capacity, and microstructure. Dry. Technol. 2018;36:893–907. doi: 10.1080/07373937.2017.1361439. DOI
Movagharnejad K., Vahdatkhoram F., Nanvakenari S. Optimization of microwave and infrared drying process of nettle leaves using design of experiments. J. Therm. Anal. Calorim. 2019;135:1677–1685. doi: 10.1007/s10973-018-7511-5. DOI
Onwude D.I., Hashim N., Abdan K., Janius R., Chen G. The effectiveness of combined infrared and hot-air drying strategies for sweet potato. J. Food Eng. 2019;241:75–87. doi: 10.1016/j.jfoodeng.2018.08.008. DOI
Siriamornpuna S., Kaisoona O., Meesoc N. Changes in colour, antioxidant activities and carotenoids (lycopene, b-carotene, lutein) of marigold flower (Tagetes erecta L.) resulting from different drying processes. Ind. Crops Prod. 2012;4:757–766.
Ertekin C., Heybeli N., Gözlekci S., Adak N., Yegin A. Drying characteristics of strawberries in vacuum dryer; Proceedings of the 18th CIGR World Congress; Beijing, China. 16–19 September 2014.
Tarhan S., Telci I., Tuncay M.T., Polatcı H. Product quality and energy consumption when drying peppermint by rotary drum dryer. Ind. Crop. Prod. 2010;32:420–427. doi: 10.1016/j.indcrop.2010.06.003. DOI
Torrez V., Jørgensen P.M., Zanne A.E. Specific leaf area: A predictive model using dried samples. Aust. J. Bot. 2013;61:350–357. doi: 10.1071/BT12236. DOI
Cheng X., Zhang M., Adhikari B. The inactivation kinetics of polyphenol oxidase in mushroom (Agaricus bisporus) during thermal and thermosonic treatments. Ultrason. Sonochem. 2013;20:674–679. doi: 10.1016/j.ultsonch.2012.09.012. PubMed DOI
Chang C.H., Lin H.Y., Chang C.Y., Liu Y.C. Comparisons on the antioxidant properties of fresh freeze-dried and hot-air-dried tomatoes. J. Food Eng. 2006;77:478–485. doi: 10.1016/j.jfoodeng.2005.06.061. DOI
Honarvar M., Javidnia K., Khosh-Khui M. Essential oil composition of fresh and dried flowers of rosa moschata from Iran. Chem. Nat. Compd. 2011;47:826–828. doi: 10.1007/s10600-011-0075-2. DOI
Da Silva D.I.S., Nogueira G.D.R., Duzzioni A.G., Barrozo M.A.S. Changes of antioxidant constituents in pineapple (Ananas comosus) residue during drying process. Ind. Crop Prod. 2013;50:557–562. doi: 10.1016/j.indcrop.2013.08.001. DOI
Saifullah M., McCullum R., McCluskey A., Vuong Q. Effects of different drying methods on extractible phenolic compounds and antioxidant properties from lemon myrtle dried leaves. Heliyon. 2019;5:1–8. doi: 10.1016/j.heliyon.2019.e03044. PubMed DOI PMC
Hassain M.B., Barry-Byan C., Martin D.A.B., Bruntin N.P. Effect of drying method on the antioxidant capacity of six Lamiaceae herbs. Food Chem. 2010;123:85–91. doi: 10.1016/j.foodchem.2010.04.003. DOI
Prathapan A., Lukhman M., Arumughan C., Sundaresan A., Raghu K.G. Effect of heat treatment on curcuminoid, colour value and total polyphenols of fresh turmeric rhizome. Int. J. Food Sci. Technol. 2009;44:1438–1444. doi: 10.1111/j.1365-2621.2009.01976.x. DOI
Boudhrioua N., BahloulImen N., Slimen I.B., Kechaou N. Comparison on the total phenol contents and the color offresh and infrared dried olive leaves. Ind. Crops Prod. 2009;29:412–419. doi: 10.1016/j.indcrop.2008.08.001. DOI
Ngamsuk S., Huang T.Z., Hsu J.L. Determination of phenolic compounds, procyanidins, and antioxidant activity in processed Coffea arabica L. leaves. Foods. 2019;8:389. doi: 10.3390/foods8090389. PubMed DOI PMC
Cascaes T.A.S., Hidalgo H.D.W., dos Santos G.F., Corrěa C.L.M., Tonon R.V. Effect of temperature on the degradation of bioactive compounds of Pinot Noir grape pomace during drying. Braz. J. Food Technol. 2017;21:e2017059.