First Comprehensive Study of a Giant Among the Insects, Titanus giganteus: Basic Facts from Its Biochemistry, Physiology, and Anatomy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CENAKVA (LM2018099)
Ministerstvo Školství, Mládeže a Tělovýchovy
RVO 60077344
undefined <span style="color:gray;font-size:10px;">undefined</span>
PubMed
32059419
PubMed Central
PMC7073837
DOI
10.3390/insects11020120
PII: insects11020120
Knihovny.cz E-zdroje
- Klíčová slova
- Cerambycidae, brain, chromatography, compound eye, digestive enzyme, electron microscopy, lipid metabolism, muscle, sensilla, testes,
- Publikační typ
- časopisecké články MeSH
Titanus giganteus is one of the largest insects in the world, but unfortunately, there is a lack of basic information about its biology. Previous papers have mostly described Titanus morphology or taxonomy, but studies concerning its anatomy and physiology are largely absent. Thus, we employed microscopic, physiological, and analytical methods to partially fill this gap. Our study focused on a detailed analysis of the antennal sensilla, where coeloconic sensilla, grouped into irregularly oval fields, and sensilla trichoidea were found. Further, the inspection of the internal organs showed apparent degeneration of the gut and almost total absence of fat body. The gut was already empty; however, certain activity of digestive enzymes was recorded. The brain was relatively small, and the ventral nerve cord consisted of three ganglia in the thorax and four ganglia in the abdomen. Each testis was composed of approximately 30 testicular follicles filled with a clearly visible sperm. Chromatographic analysis of lipids in the flight muscles showed the prevalence of storage lipids that contained 13 fatty acids, and oleic acid represented 60% of them. Some of our findings indicate that adult Titanus rely on previously accumulated reserves rather than feeding from the time of eclosion.
Faculty of Science Branišovská 31 University of South Bohemia 370 05 České Budějovice Czech Republic
Institute of Entomology Biology Centre CAS Branišovská 31 370 05 České Budějovice Czech Republic
Zobrazit více v PubMed
Raye de Breukelerwaert J. Catalogue du cabinet célèbre et très renommé d’objets d’Histoire Naturelle delaissé par le très noble sieur Joan Raye seigneur de Breukelerwaert à Amsterdam. Van Cleef; Amsterdam: 1827. pp. 68–71.
Lameere A.A.L. Révision des Prionides. Dixième mémoire. Titanines Ann. de la société Entomol. de Belg. Brux. 1904;48:309–352.
Le Moult E. Captures et Biologie. Bull. Soc. Entomol. Fr. 1909:55–56.
Bleuzen P. Les coleopteres du monde: Prioninae 1. Sci. Nat. Venette. 1994;21:1–92.
Tavakilian G. Base de données Titan sur les cerambycidés ou longicornes. [(accessed on 12 May 2019)];2018 Available online: http://titan.gbif.fr/index.html.
Monné M.A. Catalogue of the Cerambycidae (Coleoptera) of the neotropical region. Part II. Subfamilies Lepturinae, Necydalinae, Parandrinae, Prioninae, Spondylidinae and families Oxypeltidae, Vesperidae, and Disteniidae. [(accessed on 12 May 2019)];2018 Available online: http://cerambyxcat.com/Parte3_Prioninae_Lepturinae_2018.pdf.
Lacordaire J.T. Notice sur l’entomologie de la Guyane française. Ann. de la société Entomol. de Fr. Paris. 1832;1:348–366.
Drury D., Westwood J.O. In: Illustrations of Exotic Entomology, Containing Upwards of Six Hundred and Fifty Figures and Descriptions of Foreign Insects Interspersed with Remarks and Reflections on Their Nature and Properties. 1st ed. Henry G., editor. Bohn; London, UK: 1836.
Sturm J. Catalog der Käfer-Sammlung von Jacob Sturm. Gedruckt auf Kosten des Verfassers; Nürnberg, Germany: 1843.
Thomson J. Systema Cerambycidarum ou exposé de tous les genres compris dans la famille des Cérambycides et familles limitrophes. Mémoires de la Société R. des Sci. de Liège. 1864;19:1–540.
Bates H.W., IX Contributions to an Insect Fauna of the Amazon Valley (Coleoptera, Prionides) Trans. Entomol. Soc. Lond. 1869;I:37–58. doi: 10.1111/j.1365-2311.1869.tb01097.x. DOI
Schloss P.D., Delalibera I., Handelsman J., Raffa K.F. Bacteria associated with the guts of two woodboring beetles: Anoplophora glabripennis and Saperda vestita (Cerambycidae) Environ. Entomol. 2006;35:625–629. doi: 10.1603/0046-225X-35.3.625. DOI
Mohammed W.S., Ziganshina E.E., Shagimardanova E.I., Gogoleva N.E., Ziganshin A.M. Comparison of intestinal bacterial and fungal communities across various xylophagous beetle larvae (Coleoptera: Cerambycidae) Sci. Rep. 2018;8:10073. doi: 10.1038/s41598-018-27342-z. PubMed DOI PMC
Weber M., Darzens D., Coulombel C., Foglietti M.J., Charas C. Purification and some properties of two amylases from Phoracantha semipunctata larvae. Comp. Biochem. Physiol. B. 1985;80:57–60. doi: 10.1016/0305-0491(85)90422-5. DOI
Patil N.K., Raut G.A., Gaikwand S.M. Activity of midgut amylase in Aeolesthes holosericea Fabricius (Coleoptera: Cerambycidae) J. Entomol. Zool. Stud. 2016;4:5–48.
Scrivener A.M., Watanabe H., Noda H. Diet and carbohydrate digestion in the yellowspotted longicorn beetle Psacothea hilaris. J. Insect Physiol. 1997;43:1039–1052. doi: 10.1016/S0022-1910(97)00063-2. PubMed DOI
Bian X., Shaw B.D., Han Y., Christeller J.T. Midgut proteinase activities in larvae of Anoplophora glabripennis (Coleoptera: Cerambycidae) and their interaction with proteinase inhibitors. Arch. Insect Biochem. Physiol. 1996;31:23–37. doi: 10.1002/(SICI)1520-6327(1996)31:1<23::AID-ARCH2>3.0.CO;2-Y. DOI
Johnson K.S., Rabosky D. Phylogenetic distribution of cysteine proteinases in beetles: Evidence for an evolutionary shift to an alkaline digestive strategy in Cerambycidae. Comp. Biochem. Physiol. B. 2000;126:609–619. doi: 10.1016/S0305-0491(00)00232-7. PubMed DOI
Torres-Castillo J.A., Aguirre-Mancilla C.L., Gutierréz-Diéz A., Sinagawa-García S.R., Torres-Acosta R.I., García-Zambrano E.A., Aguirre-Arzola V., Zavala-García F. Intestinal proteases of Moneilema armatum (Coleoptera: Cerambycidae) fed with Opunthia cladodes. Rev. Colomb. Entomol. 2015;41:249–256.
Kukor J.J., Martin M.M. Cellulose digestion in Monochamus marmorator Kby. (Coleoptera: Cerambycidae): Role of acquired fungal enzymes. J. Chem. Ecol. 1986;12:1057–1070. doi: 10.1007/BF01638996. PubMed DOI
Park D.S., Oh H.W., Jeong W.J., Kim H., Park H.Y., Bae K.S. A culture-based study of the bacterial communities within the guts on nine longicorn beetle species and their exo-enzyme producing properties for degrading xylan and pectin. J. Microbiol. 2007;45:394–401. PubMed
Chang C.J., Wu C.P., Lu S.C., Chao A.L., Ho T.H.D., Yu S.M., Chao Y.C. A novel exo-cellulase from white spottted longhorn beetle (Anoplophora malasiaca) Insect Biochem. Mol. Biol. 2012;42:629–636. doi: 10.1016/j.ibmb.2012.05.002. PubMed DOI
Pauchet Y., Kirsch R., Giraud S., Vogel H., Heckel D.G. Identification and characterization of plant cell wall degrading enzymes from three glycoside hydrolase families in the cerambycid beetle Apriona japonica. Insect Biochem. Mol. Biol. 2014;49:1–13. doi: 10.1016/j.ibmb.2014.03.004. PubMed DOI
Silva I. Morfologia do tubo digestivo da larva de Oncideres saga saga (Dalman, 1823) (Coleoptera, Cerambycidae) Acta Biol. Par. 1975;4:227–239. doi: 10.5380/abpr.v4i0.844. DOI
Silva I., Souza V.B.V. Ultrastructural aspects of the anterior mid gut of Oncideres saga saga (Dalman, 1823)—larva (Coleoptera, Cerambycidae) Rev. Bras. Entomol. S. P. 1981;25:103–112.
Haack R.A. Feeding biology of Cerambycids. In: Wang O., editor. Cerambycidae of the World; Biology and Pest Management. CRC Press Boca; Boca Raton, FL, USA: 2017. pp. 105–124.
Yi D.A., Kuprin A.V., Lee Y.H., Bae Y.J. Newly developed fungal diet for artificial rearing of the endangered long-horned beetle Callipogon relictus (Coleoptera: Cerambycidae) Entomol. Res. 2017;47:373–379. doi: 10.1111/1748-5967.12234. DOI
Lee S.G., Kim C., Choi I.J., Kuprin A.V., Lim J. A review of host plants of Callipogon (Eoxenus) relictus Semenov (Coleoptera: Cerambycidae: Prioninae), a Korea natural monument, with a new host, Quercus aliena Blume. J. Asia-Pac. Entomol. 2010;22:353–358. doi: 10.1016/j.aspen.2019.01.016. DOI
Edwards J.S. Observation on the ecology and behaviour of the Huhu beetle, Prionoplus reticularis White (Col. Ceramb.) Trans. R. Soc. N. Z. 1961;88:727–731.
Edwards J.S. On the reproduction of Prionoplus reticularis (Coleoptera: Cerambycidae), with general remarks on reproduction in the Cerambycidae. J. Cell. Sci. 1961;102:519–522.
Mansour K., Mansour-Bek J.J. On the digestion of wood by insects. J. Exp. Biol. 1933;11:243–256.
Benham G.S. Gross morphology and transformation of the digestive tract of Prionus laticollis (Coleoptera: Cerambycidae) Ann. Entomol. Soc. Am. 1970;63:1413–1419. doi: 10.1093/aesa/63.5.1413. DOI
Benham G.S.R., Farrar J. Notes on the biology of Prionus laticollis (Coleoptera: Cerambycidae) Can. Entomol. 1976;108:569–576. doi: 10.4039/Ent108569-6. DOI
Rodstein J., McElfresh J.S., Barbour J.D., Ray A.M., Hanks L.M., Millar J.G. Identification and synthesis of a female-produced sex pheromone for the cerambycid beetle Prionus californicus. J. Chem. Ecol. 2009;35:590–600. doi: 10.1007/s10886-009-9623-7. PubMed DOI
Kaiser A., Klok J., Socha J.J., Lee W.K., Quinlan M.C., Harrison J.F. Increase in tracheal investment with beetle size supports hypothesis of oxygen limitation on insect gigantism. Proc. Natl. Acad. Sci. USA. 2007;104:13198–13203. doi: 10.1073/pnas.0611544104. PubMed DOI PMC
Levine J.D., Sauman I., Imbalzano M., Reppert S.M., Jackson F.R. Period protein from the giant silkmoth Antheraea pernyi functions as a circadian clock element in Drosophila melanogaster. Neuron. 1995;15:147–157. doi: 10.1016/0896-6273(95)90072-1. PubMed DOI
Bernfeld P. Amylases, α and β. In: Colowick S.P., Kaplan N.O., editors. Methods in Enzymology. Volume 1. Academic Press; New York, NY, USA: 1955. pp. 49–58.
Kodrík D., Vinokurov K., Tomčala A., Socha R. The effect of adipokinetic hormone on midgut characteristics in Pyrrhocoris apterus L. (Heteroptera) J. Insect Physiol. 2012;58:194–204. doi: 10.1016/j.jinsphys.2011.11.010. PubMed DOI
Frugoni J.A.C. Tampone universale di Britton e Robinson a forza ionica costante. Gazz. Chim. Ital. 1957;87:403–407.
Elpidina E.N., Vinokurov K.S., Gromenko V.A., Rudenskaya Y.A., Dunaevsky Y.E., Zhuzhikov D.P. Compartmentalization of proteinases and amylases in Nauphoeta cinerea midgut. Arch. Insect Biochem. Physiol. 2012;48:206–216. doi: 10.1002/arch.10000. PubMed DOI
Roberts I.M. Hydrolysis of 4-methylumbelliferyl butyrate: A convenient and sensitive fluorescent assay for lipase activity. Lipids. 1985;20:243–247. doi: 10.1007/BF02534195. DOI
Folch J., Lees M., Stanley G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957;226:497–509. PubMed
Tomčala. A., Kyselová V., Schneedorferová I., Opekarová I., Moos M., Urajová P., Kručinská J., Oborník M. Separation and identification of lipids in the photosynthetic cousins of Apicomplexa Chromera velia and Vitrella brassicaformis. J. Sep. Sci. 2017;40:3402–3413. PubMed
Appelqvist L.A. Rapid methods of lipid extraction and fatty acid methyl ester preparation for seed and leaf tissue with special remarks on preventing accumulation of lipid contaminants. Chem. Sci. 1968;28:551–570.
Williams D.M. Book of Insect Records. University of Florida; Gainesville, FL, USA: 2001. [(accessed on 21 June 2019)]. Chapter 30: Largest. Available online: http://entnemdept.ufl.edu/walker/ufbir/chapters/chapter_30.shtml.
Monné M.A. Catalogue of the Cerambycidae (Coleoptera) of the neotropical region. Part III. Subfamilies Parandrinae, Prioninae, Anoplodermatinae, Aseminae, Spondylidinae, Lepturinae, Oxypeltinae, and addenda to the Cerambycinae and Lamiinae. Zootaxa. 2006;1212:1–244. doi: 10.11646/zootaxa.1212.1.1. DOI
Shanbhag S.R., Müller B., Steibrecht R.A. Atlas of olfactory organs of Drosophila melanogaster. 1. Types, external organization, innervation and distribution of olfactory sensilla. Int. J. Insect Morphol. Embryol. 1999;28:377–397. doi: 10.1016/S0020-7322(99)00039-2. DOI
Altner H., Prillinger L. Ultrastructure of invertebrate chemo-, thermo-, and hygroreceptors and its functional significance. Int. Rev. Cytol. 1980;67:69–139.
Altner H., Routil C., Loftus R. The structure of bimodal chemo-, thermo-, and hygroreceptive sensilla on the antenna of Locusta migratoria. Cell Tissue Res. 1981;215:289–308. doi: 10.1007/BF00239116. PubMed DOI
Hunger T., Steinbrecht R.A. Functional morphology of a double-walled multiporous olfactory sensillum: The sensillum coeloconicum of Bombyx mori (Insecta, Lepidoptera) Tissue Cell. 1998;30:14–29. doi: 10.1016/S0040-8166(98)80003-7. PubMed DOI
Steinbrecht R.A. Olfactory receptors. In: Eguchi E., Tominaga Y., editors. Atlas of Arthropod Sensory Receptors-Dynamic Morphology in Relation to Function. Springer Verlag; Tokyo, Japan: 1999. pp. 155–176.
Di Palma A., Pistillo M., Griffo R., Garonna A.P., Germinara G.S. Scanning electron microscopy of the antennal sensilla and their secretion analysis in adults of Aromia bungii (Faldermann, 1835) (Coleoptera, Cerambycidae) Insects. 2019;10:88. doi: 10.3390/insects10040088. PubMed DOI PMC
Schneider E.S., Römer H. Sensory structures on the antennal flagella of two katydid species of the genus Mecopoda (Orthoptera, Tettigonidae) Micron. 2016;90:43–58. doi: 10.1016/j.micron.2016.08.001. PubMed DOI
Weyda F., Štys P. Coxal setal organs of Machilidae and their homologues on the genitalia. Acta Entomol. Bohemoslov. 1974;71:51–52.
Eilers E.J., Talarico G., Hansson B., Hilker M., Reinecke A. Sensing the underground – ultrastructure and function of sensory organs in root-feeding Melolontha melolontha (Coleoptera: Scarabaeinae) larvae. PLoS ONE. 2012;7:e41357. doi: 10.1371/journal.pone.0041357. PubMed DOI PMC
Voigt D., Takanashi T., Tsuchihara K., Yazaki K., Kuroda K., Tsubaki R., Hosoda N. Strongest grip on the rod: Tarsal morphology and attachment of Japanese pine sawyer beetles. Zool. Lett. 2017;3:16. doi: 10.1186/s40851-017-0076-5. PubMed DOI PMC
Gorb E.V., Hosoda N., Miksch C., Gorb S.N. Slippery pores: Anti-adhesive effect of nanoporous substrates on the beetle attachment system. J. R. Soc. Interface. 2019;7:1571–1579. doi: 10.1098/rsif.2010.0081. PubMed DOI PMC
Bullock J.M.R., Federle W. Division of labour and sex differences between fibrillar, tarsal adhesive pads in beetles: Effective elastic modulus and attachment performance. J. Exp. Biol. 2009;212:1876–1888. doi: 10.1242/jeb.030551. PubMed DOI
Niederegger S., Gorb S., Jiao Y.K. Contact behaviour of tenent setae in attachment pads of the blowfly Calliphora vicina (Diptera, Calliphoridae) J. Comp. Physiol. A. 2002;187:961–970. doi: 10.1007/s00359-001-0265-7. PubMed DOI
Büscher T.H., Buckley T.R., Grohmann C., Gorb S.N., Bradler S. The evolution of tarsal adhesive microstructures in stick and leaf insects (Phasmatodea) Front. Ecol. Evol. 2018;6:1–11. doi: 10.3389/fevo.2018.00069. DOI
Chapman R.F. The Insects, Structure and Function. 4th ed. Cambridge University Press; Cambridge, UK: 1998. pp. 1–770.
Sehadová H., Šauman I., Sehnal F. Immunocytochemical distribution of pigment dispersing hormone in the cephalic ganglia of polyneopteran insects. Cell Tissue Res. 2003;312:113–125. doi: 10.1007/s00441-003-0705-5. PubMed DOI
Mitchell R.F., Hall L.P., Reagel P.F., McKenna D.D., Baker T.C., Hildebrand J.G. Odorant receptors and antennal lobe morphology offer a new approach to understanding the olfactory biology of the Asian longhorned beetle. J. Comp. Physiol. A. 2017;203:99–109. doi: 10.1007/s00359-016-1138-4. PubMed DOI PMC
Gokan N., Hosobuchi Y. Fine structure of the compound eyes of longicorn beetles (Coleoptera: Cerambycidae) Appl. Entomol. Zool. 1979;14:12–27. doi: 10.1303/aez.14.12. DOI
Wachmann E. Untersuchungen zur Feinstruktur der Augen von Bockka fern (Coleoptera, Cerambycidae) Zoomorphology. 1979;92:19–48. doi: 10.1007/BF00999833. DOI
Meyer-Rochow V.B., Mishra M. A six-rhabdomere, open rhabdom arrangement in the eye of the chrysanthemum beetle Phytoecia rufiventris: Some ecophysiological predictions based on eye anatomy. Biocell. 2009;33:115–120. PubMed
Crowson R.A. The Biology of the Coleoptera. Academic Press; New York, NY, USA: 1981. pp. 1–802.
Caveney S. The phylogenetic significance of ommatidium structure in the compound eye of polyphagan beetles. Can. J. Zool. 1986;64:1787–1819. doi: 10.1139/z86-270. DOI
Meyer-Rochow V.B. The dioptric system of beetle compound eyes. In: Horridge G.A., editor. The Compound Eye and Vision of Insects. Clarendon Press; Oxford, UK: 1975. pp. 299–313.
Mishra M., Meyer-Rochow V.B. Fine structure of the compound eye of the fungus beetle Neotriplax lewisi (Coleoptera, Cucujiformia, Erotylidae) Invertebr. Biol. 2006;125:265–278. doi: 10.1111/j.1744-7410.2006.00059.x. DOI
Jia L.P., Liang A.P. An apposition-like compound eye with a layered rhabdom in the small diving beetle Agabus japonicus (Coleoptera, Dytiscidae) J. Morphol. 2014;275:1273–1283. doi: 10.1002/jmor.20300. PubMed DOI
Niven J.E., Graham C.M., Burrows M. Diversity and evolution of insect nervous cord. Annu. Rev. Entomol. 2008;53:253–271. doi: 10.1146/annurev.ento.52.110405.091322. PubMed DOI
Crowson R.A. The phylogeny of Coleoptera. Annu. Rev. Entomol. 1960;5:111–134. doi: 10.1146/annurev.en.05.010160.000551. DOI
Calder A.A. The alimentary canal and nervous system of Curculionidae (Coleoptera): Gross morphology and systematic significance. J. Nat. Hist. 1989;23:1205–1265. doi: 10.1080/00222938900770671. DOI
Mohammadi H., Venkataraman Ramamurthy V., Subrahmanyam B. Configuration of nerve cord and characterization of brain neurosecretory cells in adult firefly, Luciola gorhami (Coleoptera: Lampyridae) J. Crop. Prot. 2016;5:179–187. doi: 10.18869/modares.jcp.5.2.179. DOI
Penteado-Dias A.M. Comparative study of the neural cord in the – Cerambycidae (Coleoptera) Rev. Bras. Entomol. 1984;28:223–243.
Snodgrass R.E. Principles of Insect Morphology. McGraw-Hill; New York, NY, USA: 1935. pp. 1–667.
Martin M.M. Invertebrate-Microbial Interactions. Ingested Fungal Enzymes in Arthropod Biology. Cornell University Press; Ithaca and London, UK: 1987. pp. 1–148.
Crook D.J., Prabhakar S., Oppert B. Protein digestion in larvae of the red oak borer Enaphalodes rufulus. Physiol. Entomol. 2009;34:152–157. doi: 10.1111/j.1365-3032.2008.00667.x. DOI
Sharifi M., Chitgar M.G., Ghadamyari M., Ajamhasani M. Identification and characterization of midgut digestive proteases from the rosaceous branch borer, Osphranteria coerulescens Redtenbacher (Coleoptera: Cerambycidae) Rom. J. Biochem. 2012;49:33–47.
Zibaee A. Digestive proteolytic profile in Stromatium fulvum Villers (Coleoptera: Cerambycidae) Rom. J. Biochem. 2014;51:17–30.
Canavoso L.E., Jouni Z.E., Karnas K.J., Pennington J.E., Wells M.A. Fat metabolism in insects. Annu. Rev. Nutr. 2001;21:23–46. doi: 10.1146/annurev.nutr.21.1.23. PubMed DOI
Howard R.W., Stanley-Samuelson D.W. Fatty acid composition of fat body and Malpighian tubules of the tenebrionid beetle, Zophobas atratus: Significance in eicosanoid-mediated physiology. Comp. Biochem. Physiol. B. 1996;115:429–437. doi: 10.1016/S0305-0491(96)00161-7. DOI
Tomčala A., Bártů I., Šimek P., Kodrík D. Locust adipokinetic hormone mobilizes diacylglycerols selectively. Comp. Biochem. Physiol. B. 2010;156:26–32. doi: 10.1016/j.cbpb.2010.01.015. PubMed DOI
Canavoso L.E., Frede S., Rubiolo E.R. Metabolic pathways for dietary lipids in the midgut of hematophagous Panstrongylus megistus (Hemiptera: Reduviidae) Insect. Biochem. Mol. Biol. 2004;34:845–854. doi: 10.1016/j.ibmb.2004.05.008. PubMed DOI
Stanley-Samuelson D.W., Jurenka R.A., Cripps C., Blomquist G.J., de Renobales M. Fatty acids in insects: Composition, metabolism, and biological significance. Arch. Insect Biochem. Physiol. 1988;9:1–33. doi: 10.1002/arch.940090102. DOI
Diefenbach L.M.G., Redaelli L.R., Gassen D.N. Characterization of the internal reproductive organs and their state as diapause indicator in Phytalus sanctipauli Blanchard, 1850 (Coleoptera, Scarabaeidae) Rev. Brasil. Biol. 1998;58:541–546. doi: 10.1590/S0034-71081998000300019. DOI