Spatial and Temporal Variability of Plant Leaf Responses Cascade after PSII Inhibition: Raman, Chlorophyll Fluorescence and Infrared Thermal Imaging
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LTC18036
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32069965
PubMed Central
PMC7070318
DOI
10.3390/s20041015
PII: s20041015
Knihovny.cz E-zdroje
- Klíčová slova
- Raman mapping, carotenoids, oxidative stress, photoinhibition, photosynthesis, xanthophyll cycle, zeaxanthin,
- MeSH
- časové faktory MeSH
- Chenopodium fyziologie MeSH
- chlorofyl a metabolismus MeSH
- fluorescence MeSH
- fotosystém II - proteinový komplex metabolismus MeSH
- infračervené záření * MeSH
- listy rostlin metabolismus MeSH
- optické zobrazování * MeSH
- počítačové zpracování signálu MeSH
- Ramanova spektroskopie * MeSH
- teplota * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorofyl a MeSH
- fotosystém II - proteinový komplex MeSH
The use of photosystem II (PSII) inhibitors allows simulating cascade of defense and damage responses, including the oxidative stress. In our study, PSII inhibiting herbicide metribuzin was applied to the leaf of the model plant species Chenopodium album. The temporally and spatially resolved cascade of defense responses was studied noninvasively at the leaf level by combining three imaging approaches: Raman spectroscopy as a principal method, corroborated by chlorophyll a fluorescence (ChlF) and infrared thermal imaging. ChlF imaging show time-dependent transport in acropetal direction through veins and increase of area affected by metribuzin and demonstrated the ability to distinguish between fast processes at the level of electron transport (1 - Vj) from slow processes at the level of non-photochemical energy dissipation (NPQ) or maximum efficiency of PSII photochemistry (Fv/Fm). The high-resolution resonance Raman images show zones of local increase of carotenoid signal 72 h after the herbicide application, surrounding the damaged tissue, which points to the activation of defense mechanisms. The shift in the carotenoid band indicates structural changes in carotenoids. Finally, the increase of leaf temperature in the region surrounding the spot of herbicide application and expanding in the direction to the leaf tip proves the metribuzin effect on slow stomata closure.
Zobrazit více v PubMed
Takahashi S., Murata N. How do environmental stresses accelerate photoinhibition? Trends Plant Sci. 2008;13:178–182. doi: 10.1016/j.tplants.2008.01.005. PubMed DOI
Das K., Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2014;2:53. doi: 10.3389/fenvs.2014.00053. DOI
Rutherford A.W., Krieger-Liszkay A. Herbicide-induced oxidative stress in photosystem II. Trends Biochem. Sci. 2001;26:648–653. doi: 10.1016/S0968-0004(01)01953-3. PubMed DOI
Powles S.B. Photoinhibition of Photosynthesis Induced by Visible Light. Annu. Rev. Plant. Physiol. 1984;35:15–44. doi: 10.1146/annurev.pp.35.060184.000311. DOI
Aro E.-M., Virgin I., Andersson B. Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. BBA-Bioenergetics. 1993;1143:113–134. doi: 10.1016/0005-2728(93)90134-2. PubMed DOI
Takahashi S., Badger M.R. Photoprotection in plants: A new light on photosystem II damage. Trends Plant Sci. 2011;16:53–60. doi: 10.1016/j.tplants.2010.10.001. PubMed DOI
Murchie E.H., Lawson T. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. J. Exp. Bot. 2013;64:3983–3998. doi: 10.1093/jxb/ert208. PubMed DOI
Harbinson J., Prinzenberg A.E., Kruijer W., Aarts M.G. High throughput screening with chlorophyll fluorescence imaging and its use in crop improvement. Curr. Opin. Biotechnol. 2012;23:221–226. doi: 10.1016/j.copbio.2011.10.006. PubMed DOI
Stahl W., Sies H. Antioxidant activity of carotenoids. Mol. Aspects Med. 2003;24:345–351. doi: 10.1016/S0098-2997(03)00030-X. PubMed DOI
Adams W.W., Demmig-Adams B. Operation of the xanthophyll cycle in higher plants in response to diurnal changes in incident sunlight. Planta. 1992;186:390–398. doi: 10.1007/BF00195320. PubMed DOI
Lunch C.K., LaFountain A.M., Thomas S., Frank H.A., Lewis L.A., Cardon Z.G. The xanthophyll cycle and NPQ in diverse desert and aquatic green algae. Photosynth. Res. 2013;115:139–151. doi: 10.1007/s11120-013-9846-x. PubMed DOI
Havaux M., Dall’Osto L., Bassi R. Zeaxanthin Has Enhanced Antioxidant Capacity with Respect to All Other Xanthophylls in Arabidopsis Leaves and Functions Independent of Binding to PSII Antennae. Plant Physiol. 2007;145:1506–1520. doi: 10.1104/pp.107.108480. PubMed DOI PMC
Telfer A., Pascal A., Gall A. Carotenoids in Photosynthesis. Carotenoids. 2008;4:265–308.
Omasa K., Takayama K. Simultaneous Measurement of Stomatal Conductance, Non-photochemical Quenching, and Photochemical Yield of Photosystem II in Intact Leaves by Thermal and Chlorophyll Fluorescence Imaging. Plant. Cell Physiol. 2003;44:1290–1300. doi: 10.1093/pcp/pcg165. PubMed DOI
Maia L.F., Fernandes R.F., Lobo-Hajdu G., de Oliveira L.F.C. Conjugated polyenes as chemical probes of life signature: Use of Raman spectroscopy to differentiate polyenic pigments. Philos. Trans. R. Soc. A. 2014;72:20140200. doi: 10.1098/rsta.2014.0200. PubMed DOI
Gill D., Kilponen R.G., Rimai L. Resonance Raman scattering of laser radiation by vibrational modes of carotenoid pigment molecules in intact plant tissues. Nature. 1970;227:743. doi: 10.1038/227743a0. PubMed DOI
Merlin J.C. Resonance Raman spectroscopy of carotenoids and carotenoid-containing systems. Pure Appl. Chem. 1985;57:785–792. doi: 10.1351/pac198557050785. DOI
Withnall R., Chowdhry B.Z., Silver J., Edwards H.G.M., de Oliveira L.F.C. Raman spectra of carotenoids in natural products. Spectrochim. Acta A. 2003;59:2207–2212. doi: 10.1016/S1386-1425(03)00064-7. PubMed DOI
Marshall C.P., Leuko S., Coyle C.M., Walter M.R., Burns B.P., Neilan B.A. Carotenoid Analysis of Halophilic Archaea by Resonance Raman Spectroscopy. Astrobiology. 2007;7:631–643. doi: 10.1089/ast.2006.0097. PubMed DOI
Baranska M., Schütze W., Schulz H. Determination of Lycopene and β-Carotene Content in Tomato Fruits and Related Products: Comparison of FT-Raman, ATR-IR, and NIR Spectroscopy. Anal. Chem. 2006;78:8456–8461. doi: 10.1021/ac061220j. PubMed DOI
Schulz H., Baranska M. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib. Spectrosc. 2007;43:13–25. doi: 10.1016/j.vibspec.2006.06.001. DOI
Gierlinger N., Keplinger T., Harrington M. Imaging of plant cell walls by confocal Raman microscopy. Nat. Protoc. 2012;7:1694–1708. doi: 10.1038/nprot.2012.092. PubMed DOI
Gierlinger N. Revealing changes in molecular composition of plant cell walls on the micron-level by Raman mapping and vertex component analysis (VCA) Front. Plant. Sci. 2014;5:306. doi: 10.3389/fpls.2014.00306. PubMed DOI PMC
Altangerel N., Ariunbold G.O., Gorman C., Alkahtani M.H., Borrego E.J., Bohlmeyer D., Hemmer P., Kolomiets M.V., Yuan J.S., Scully M.O. In vivo diagnostics of early abiotic plant stress response via Raman spectroscopy. Proc. Natl. Acad. Sci. USA. 2017;114:3393. doi: 10.1073/pnas.1701328114. PubMed DOI PMC
Baranski R., Baranska M., Schulz H. Changes in carotenoid content and distribution in living plant tissue can be observed and mapped in situ using NIR-FT-Raman spectroscopy. Planta. 2005;222:448–457. doi: 10.1007/s00425-005-1566-9. PubMed DOI
Schulz H., Baranska M., Baranski R. Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis. Biopolymers. 2005;77:212–221. doi: 10.1002/bip.20215. PubMed DOI
Roman M., Marzec K.M., Grzebelus E., Simon P.W., Baranska M., Baranski R. Composition and (in)homogeneity of carotenoid crystals in carrot cells revealed by high resolution Raman imaging. Spectrochim. Acta A. 2015;136:1395–1400. doi: 10.1016/j.saa.2014.10.026. PubMed DOI
Vítek P., Novotná K., Hodaňová P., Rapantová B., Klem K. Detection of herbicide effects on pigment composition and PSII photochemistry in Helianthus annuus by Raman spectroscopy and chlorophyll a fluorescence. Spectrochim. Acta A. 2017;170:234–241. doi: 10.1016/j.saa.2016.07.025. PubMed DOI
Mehrotra R., Bhalothia P., Bansal P., Basantani M.K., Bharti V., Mehrotra S. Abscisic acid and abiotic stress tolerance-Different tiers of regulation. J. Plant Physiol. 2014;171:486–496. doi: 10.1016/j.jplph.2013.12.007. PubMed DOI
Seo M., Koshiba T. Complex regulation of ABA biosynthesis in plants. Trends Plant Sci. 2002;7:41–48. doi: 10.1016/S1360-1385(01)02187-2. PubMed DOI
Sobrino J.A., Frate F.D., Drusch M., Jiménez-Muñoz J.C., Manunta P., Regan A. Review of Thermal Infrared Applications and Requirements for Future High-Resolution Sensors. IEEE Trans. Geosci. Remote. 2016;54:2963–2972. doi: 10.1109/TGRS.2015.2509179. DOI
Jones H.G. Advances in Plant. Ecophysiology Techniques. Springer; Cham, Switzerland: 2018. Thermal Imaging and Infrared Sensing in Plant Ecophysiology; pp. 135–151.
Mishra K.B., Mishra A., Klem K., Govindjee Plant phenotyping: A perspective. Indian J. Plant Physiol. 2016;21:514–527. doi: 10.1007/s40502-016-0271-y. DOI
Klem K., Mishra K.B., Novotná K., Rapantová B., Hodaňová P., Mishra A., Kováč D., Urban O. Distinct growth and physiological responses of Arabidopsis thaliana natural accessions to drought stress and their detection using spectral reflectance and thermal imaging. Funct. Plant Biol. 2017;44:312–323. doi: 10.1071/FP16194. PubMed DOI
Leinonen I., Grant O.M., Tagliavia C.P.P., Chaves M.M., Jones H.G. Estimating stomatal conductance with thermal imagery. Plant. Cell Environ. 2006;29:1508–1518. doi: 10.1111/j.1365-3040.2006.01528.x. PubMed DOI
Ketel D.H., van der Wielen M.J., Lotz L.A.P. Prediction of a low dose herbicide effect from studies on binding of metribuzin to the chloroplasts of Chenopodium album L. Ann. Appl. Biol. 1996;128:519–531. doi: 10.1111/j.1744-7348.1996.tb07111.x. DOI
Nasdala L., Beyssac O., Schopf J.W., Bleisteiner B. Raman Imaging. Springer; Berlin/Heidelber, Germany: 2012. Application of Raman-based images in the Earth sciences; pp. 145–187.
Lambrev P.H., Miloslavina Y., Jahns P., Holzwarth A.R. On the relationship between non-photochemical quenching and photoprotection of Photosystem II. BBA-Bioenergetics. 2012;1817:760–769. doi: 10.1016/j.bbabio.2012.02.002. PubMed DOI
Fujita M., Fujita Y., Noutoshi Y., Takahashi F., Narusaka Y., Yamaguchi-Shinozaki K., Shinozaki K. Crosstalk between abiotic and biotic stress responses: A current view from the points of convergence in the stress signaling networks. Curr. Opin. Plant Biol. 2006;9:436–442. doi: 10.1016/j.pbi.2006.05.014. PubMed DOI
Hess F.D. Light-dependent herbicides: An overview. Weed Sci. 2000;48:160–170. doi: 10.1614/0043-1745(2000)048[0160:LDHAO]2.0.CO;2. DOI
Baxter A., Mittler R., Suzuki N. ROS as key players in plant stress signalling. J. Exp. Bot. 2014;65:1229–1240. doi: 10.1093/jxb/ert375. PubMed DOI
Song Y., Miao Y., Song C.-P. Behind the scenes: The roles of reactive oxygen species in guard cells. New Phytol. 2014;201:1121–1140. doi: 10.1111/nph.12565. PubMed DOI
Mittler R., Blumwald E. The Roles of ROS and ABA in Systemic Acquired Acclimation. Plant Cell. 2015;27:64–70. doi: 10.1105/tpc.114.133090. PubMed DOI PMC
Tuteja N. Abscisic Acid and Abiotic Stress Signaling. Plant Signal. Behav. 2007;2:135–138. doi: 10.4161/psb.2.3.4156. PubMed DOI PMC
Fanciullino A.L., Bidel L.P.R., Urban L. Carotenoid responses to environmental stimuli: Integrating redox and carbon controls into a fruit model. Plant Cell Environ. 2014;37:273–289. doi: 10.1111/pce.12153. PubMed DOI
Petrov V., Hille J., Mueller-Roeber B., Gechev T.S. ROS-mediated abiotic stress-induced programmed cell death in plants. Front. Plant Sci. 2015;6:69. doi: 10.3389/fpls.2015.00069. PubMed DOI PMC
Kalaji H.M., Schansker G., Brestic M., Bussotti F., Calatayud A., Ferroni L., Goltsev V., Guidi L., Jajoo A., Pengmin L., et al. Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynth. Res. 2017;132:13–66. doi: 10.1007/s11120-016-0318-y. PubMed DOI PMC
Schoefs B. Plant pigments: Properties, analysis, degradation. Adv. Food Nutr. Res. 2005;49:41–91. PubMed
Wise R.R., Naylor A.W. Chilling-Enhanced Photooxidation: Evidence for the Role of Singlet Oxygen and Superoxide in the Breakdown of Pigments and Endogenous Antioxidants. Plant Physiol. 1987;83:278–282. doi: 10.1104/pp.83.2.278. PubMed DOI PMC
Ramel F., Birtic S., Ginies C., Soubigou-Taconnat L., Triantaphylidès C., Havaux M. Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proc. Natl. Acad. Sci. USA. 2012;109:5535–5540. doi: 10.1073/pnas.1115982109. PubMed DOI PMC
Havaux M. Carotenoid oxidation products as stress signals in plants. Plant J. 2014;79:597–606. doi: 10.1111/tpj.12386. PubMed DOI
Schäfer L., Vioque A., Sandmann G. Functional in situ evaluation of photosynthesis-protecting carotenoids in mutants of the cyanobacterium Synechocystis PCC6803. J. Photochem. Photobiol. B. 2005;78:195–201. doi: 10.1016/j.jphotobiol.2004.11.007. PubMed DOI
Kusama Y., Inoue S., Jimbo H., Takaichi S., Sonoike K., Hihara Y., Nishiyama Y. Zeaxanthin and Echinenone Protect the Repair of Photosystem II from Inhibition by Singlet Oxygen in Synechocystis sp. PCC 6803. Plant Cell Physiol. 2015;56:906–916. doi: 10.1093/pcp/pcv018. PubMed DOI
Saito T., Miyabe Y., Ide H., Yamamoto O. Hydroxyl radical scavenging ability of bacterioruberin. Radiat. Phys. Chem. 1997;50:267–269. doi: 10.1016/S0969-806X(97)00036-4. DOI
De Oliveira V.E., Castro H.V., Edwards H.G.M., de Oliveira L.F.C. Carotenes and carotenoids in natural biological samples: A Raman spectroscopic analysis. J. Raman Spectrosc. 2010;41:642–650. doi: 10.1002/jrs.2493. DOI
Vítek P., Ascaso C., Artieda O., Casero M.C., Wierzchos J. Discovery of carotenoid red-shift in endolithic cyanobacteria from the Atacama Desert. Sci. Rep. 2017;7:1–10. doi: 10.1038/s41598-017-11581-7. PubMed DOI PMC
Edwards H.G.M., Moeller R., Villar S.E.J., Horneck G., Stackebrandt E. Raman spectroscopic study of the photoprotection of extremophilic microbes against ultraviolet radiation. Int. J. Astrobiol. 2006;5:313–318. doi: 10.1017/S147355040600348X. DOI
Vítek P., Osterrothová K., Jehlička J. Beta-carotene-A possible biomarker in the Martian evaporitic environment: Raman micro-spectroscopic study. Planet. Space Sci. 2009;57:454–459. doi: 10.1016/j.pss.2008.06.001. DOI
Ruban A.V., Pascal A.A., Robert B., Horton P. Configuration and Dynamics of Xanthophylls in Light-harvesting Antennae of Higher Plants: Spectroscopic analysis of isolated light-harvesting complex of photosystem II and thylakoid membranes. J. Biol. Chem. 2001;276:24862–24870. doi: 10.1074/jbc.M103263200. PubMed DOI
Ruban A.V., Pascal A., Lee P.J., Robert B., Horton P. Molecular Configuration of Xanthophyll Cycle Carotenoids in Photosystem II Antenna Complexes. J. Biol. Chem. 2002;277:42937–42942. doi: 10.1074/jbc.M207823200. PubMed DOI
Leinonen I., Jones H.G. Combining thermal and visible imagery for estimating canopy temperature and identifying plant stress. J. Exp. Bot. 2004;55:1423–1431. doi: 10.1093/jxb/erh146. PubMed DOI
Costa J.M., Grant O.M., Chaves M.M. Thermography to explore plant–environment interactions. J. Exp. Bot. 2013;64:3937–3949. doi: 10.1093/jxb/ert029. PubMed DOI
Neill S. Interactions between Abscisic Acid, Hydrogen Peroxide and Nitric Oxide Mediate Survival Responses during Water Stress. New Phytol. 2007;175:4–6. doi: 10.1111/j.1469-8137.2007.02112.x. PubMed DOI
Neill S., Barros R., Bright J., Desikan R., Hancock J., Harrison J., Morris P., Ribeiro D., Wilson I. Nitric oxide, stomatal closure, and abiotic stress. J. Exp. Bot. 2008;59:165–176. doi: 10.1093/jxb/erm293. PubMed DOI