Spatial and Temporal Variability of Plant Leaf Responses Cascade after PSII Inhibition: Raman, Chlorophyll Fluorescence and Infrared Thermal Imaging

. 2020 Feb 13 ; 20 (4) : . [epub] 20200213

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32069965

Grantová podpora
LTC18036 Ministerstvo Školství, Mládeže a Tělovýchovy

The use of photosystem II (PSII) inhibitors allows simulating cascade of defense and damage responses, including the oxidative stress. In our study, PSII inhibiting herbicide metribuzin was applied to the leaf of the model plant species Chenopodium album. The temporally and spatially resolved cascade of defense responses was studied noninvasively at the leaf level by combining three imaging approaches: Raman spectroscopy as a principal method, corroborated by chlorophyll a fluorescence (ChlF) and infrared thermal imaging. ChlF imaging show time-dependent transport in acropetal direction through veins and increase of area affected by metribuzin and demonstrated the ability to distinguish between fast processes at the level of electron transport (1 - Vj) from slow processes at the level of non-photochemical energy dissipation (NPQ) or maximum efficiency of PSII photochemistry (Fv/Fm). The high-resolution resonance Raman images show zones of local increase of carotenoid signal 72 h after the herbicide application, surrounding the damaged tissue, which points to the activation of defense mechanisms. The shift in the carotenoid band indicates structural changes in carotenoids. Finally, the increase of leaf temperature in the region surrounding the spot of herbicide application and expanding in the direction to the leaf tip proves the metribuzin effect on slow stomata closure.

Zobrazit více v PubMed

Takahashi S., Murata N. How do environmental stresses accelerate photoinhibition? Trends Plant Sci. 2008;13:178–182. doi: 10.1016/j.tplants.2008.01.005. PubMed DOI

Das K., Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2014;2:53. doi: 10.3389/fenvs.2014.00053. DOI

Rutherford A.W., Krieger-Liszkay A. Herbicide-induced oxidative stress in photosystem II. Trends Biochem. Sci. 2001;26:648–653. doi: 10.1016/S0968-0004(01)01953-3. PubMed DOI

Powles S.B. Photoinhibition of Photosynthesis Induced by Visible Light. Annu. Rev. Plant. Physiol. 1984;35:15–44. doi: 10.1146/annurev.pp.35.060184.000311. DOI

Aro E.-M., Virgin I., Andersson B. Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. BBA-Bioenergetics. 1993;1143:113–134. doi: 10.1016/0005-2728(93)90134-2. PubMed DOI

Takahashi S., Badger M.R. Photoprotection in plants: A new light on photosystem II damage. Trends Plant Sci. 2011;16:53–60. doi: 10.1016/j.tplants.2010.10.001. PubMed DOI

Murchie E.H., Lawson T. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. J. Exp. Bot. 2013;64:3983–3998. doi: 10.1093/jxb/ert208. PubMed DOI

Harbinson J., Prinzenberg A.E., Kruijer W., Aarts M.G. High throughput screening with chlorophyll fluorescence imaging and its use in crop improvement. Curr. Opin. Biotechnol. 2012;23:221–226. doi: 10.1016/j.copbio.2011.10.006. PubMed DOI

Stahl W., Sies H. Antioxidant activity of carotenoids. Mol. Aspects Med. 2003;24:345–351. doi: 10.1016/S0098-2997(03)00030-X. PubMed DOI

Adams W.W., Demmig-Adams B. Operation of the xanthophyll cycle in higher plants in response to diurnal changes in incident sunlight. Planta. 1992;186:390–398. doi: 10.1007/BF00195320. PubMed DOI

Lunch C.K., LaFountain A.M., Thomas S., Frank H.A., Lewis L.A., Cardon Z.G. The xanthophyll cycle and NPQ in diverse desert and aquatic green algae. Photosynth. Res. 2013;115:139–151. doi: 10.1007/s11120-013-9846-x. PubMed DOI

Havaux M., Dall’Osto L., Bassi R. Zeaxanthin Has Enhanced Antioxidant Capacity with Respect to All Other Xanthophylls in Arabidopsis Leaves and Functions Independent of Binding to PSII Antennae. Plant Physiol. 2007;145:1506–1520. doi: 10.1104/pp.107.108480. PubMed DOI PMC

Telfer A., Pascal A., Gall A. Carotenoids in Photosynthesis. Carotenoids. 2008;4:265–308.

Omasa K., Takayama K. Simultaneous Measurement of Stomatal Conductance, Non-photochemical Quenching, and Photochemical Yield of Photosystem II in Intact Leaves by Thermal and Chlorophyll Fluorescence Imaging. Plant. Cell Physiol. 2003;44:1290–1300. doi: 10.1093/pcp/pcg165. PubMed DOI

Maia L.F., Fernandes R.F., Lobo-Hajdu G., de Oliveira L.F.C. Conjugated polyenes as chemical probes of life signature: Use of Raman spectroscopy to differentiate polyenic pigments. Philos. Trans. R. Soc. A. 2014;72:20140200. doi: 10.1098/rsta.2014.0200. PubMed DOI

Gill D., Kilponen R.G., Rimai L. Resonance Raman scattering of laser radiation by vibrational modes of carotenoid pigment molecules in intact plant tissues. Nature. 1970;227:743. doi: 10.1038/227743a0. PubMed DOI

Merlin J.C. Resonance Raman spectroscopy of carotenoids and carotenoid-containing systems. Pure Appl. Chem. 1985;57:785–792. doi: 10.1351/pac198557050785. DOI

Withnall R., Chowdhry B.Z., Silver J., Edwards H.G.M., de Oliveira L.F.C. Raman spectra of carotenoids in natural products. Spectrochim. Acta A. 2003;59:2207–2212. doi: 10.1016/S1386-1425(03)00064-7. PubMed DOI

Marshall C.P., Leuko S., Coyle C.M., Walter M.R., Burns B.P., Neilan B.A. Carotenoid Analysis of Halophilic Archaea by Resonance Raman Spectroscopy. Astrobiology. 2007;7:631–643. doi: 10.1089/ast.2006.0097. PubMed DOI

Baranska M., Schütze W., Schulz H. Determination of Lycopene and β-Carotene Content in Tomato Fruits and Related Products: Comparison of FT-Raman, ATR-IR, and NIR Spectroscopy. Anal. Chem. 2006;78:8456–8461. doi: 10.1021/ac061220j. PubMed DOI

Schulz H., Baranska M. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib. Spectrosc. 2007;43:13–25. doi: 10.1016/j.vibspec.2006.06.001. DOI

Gierlinger N., Keplinger T., Harrington M. Imaging of plant cell walls by confocal Raman microscopy. Nat. Protoc. 2012;7:1694–1708. doi: 10.1038/nprot.2012.092. PubMed DOI

Gierlinger N. Revealing changes in molecular composition of plant cell walls on the micron-level by Raman mapping and vertex component analysis (VCA) Front. Plant. Sci. 2014;5:306. doi: 10.3389/fpls.2014.00306. PubMed DOI PMC

Altangerel N., Ariunbold G.O., Gorman C., Alkahtani M.H., Borrego E.J., Bohlmeyer D., Hemmer P., Kolomiets M.V., Yuan J.S., Scully M.O. In vivo diagnostics of early abiotic plant stress response via Raman spectroscopy. Proc. Natl. Acad. Sci. USA. 2017;114:3393. doi: 10.1073/pnas.1701328114. PubMed DOI PMC

Baranski R., Baranska M., Schulz H. Changes in carotenoid content and distribution in living plant tissue can be observed and mapped in situ using NIR-FT-Raman spectroscopy. Planta. 2005;222:448–457. doi: 10.1007/s00425-005-1566-9. PubMed DOI

Schulz H., Baranska M., Baranski R. Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis. Biopolymers. 2005;77:212–221. doi: 10.1002/bip.20215. PubMed DOI

Roman M., Marzec K.M., Grzebelus E., Simon P.W., Baranska M., Baranski R. Composition and (in)homogeneity of carotenoid crystals in carrot cells revealed by high resolution Raman imaging. Spectrochim. Acta A. 2015;136:1395–1400. doi: 10.1016/j.saa.2014.10.026. PubMed DOI

Vítek P., Novotná K., Hodaňová P., Rapantová B., Klem K. Detection of herbicide effects on pigment composition and PSII photochemistry in Helianthus annuus by Raman spectroscopy and chlorophyll a fluorescence. Spectrochim. Acta A. 2017;170:234–241. doi: 10.1016/j.saa.2016.07.025. PubMed DOI

Mehrotra R., Bhalothia P., Bansal P., Basantani M.K., Bharti V., Mehrotra S. Abscisic acid and abiotic stress tolerance-Different tiers of regulation. J. Plant Physiol. 2014;171:486–496. doi: 10.1016/j.jplph.2013.12.007. PubMed DOI

Seo M., Koshiba T. Complex regulation of ABA biosynthesis in plants. Trends Plant Sci. 2002;7:41–48. doi: 10.1016/S1360-1385(01)02187-2. PubMed DOI

Sobrino J.A., Frate F.D., Drusch M., Jiménez-Muñoz J.C., Manunta P., Regan A. Review of Thermal Infrared Applications and Requirements for Future High-Resolution Sensors. IEEE Trans. Geosci. Remote. 2016;54:2963–2972. doi: 10.1109/TGRS.2015.2509179. DOI

Jones H.G. Advances in Plant. Ecophysiology Techniques. Springer; Cham, Switzerland: 2018. Thermal Imaging and Infrared Sensing in Plant Ecophysiology; pp. 135–151.

Mishra K.B., Mishra A., Klem K., Govindjee Plant phenotyping: A perspective. Indian J. Plant Physiol. 2016;21:514–527. doi: 10.1007/s40502-016-0271-y. DOI

Klem K., Mishra K.B., Novotná K., Rapantová B., Hodaňová P., Mishra A., Kováč D., Urban O. Distinct growth and physiological responses of Arabidopsis thaliana natural accessions to drought stress and their detection using spectral reflectance and thermal imaging. Funct. Plant Biol. 2017;44:312–323. doi: 10.1071/FP16194. PubMed DOI

Leinonen I., Grant O.M., Tagliavia C.P.P., Chaves M.M., Jones H.G. Estimating stomatal conductance with thermal imagery. Plant. Cell Environ. 2006;29:1508–1518. doi: 10.1111/j.1365-3040.2006.01528.x. PubMed DOI

Ketel D.H., van der Wielen M.J., Lotz L.A.P. Prediction of a low dose herbicide effect from studies on binding of metribuzin to the chloroplasts of Chenopodium album L. Ann. Appl. Biol. 1996;128:519–531. doi: 10.1111/j.1744-7348.1996.tb07111.x. DOI

Nasdala L., Beyssac O., Schopf J.W., Bleisteiner B. Raman Imaging. Springer; Berlin/Heidelber, Germany: 2012. Application of Raman-based images in the Earth sciences; pp. 145–187.

Lambrev P.H., Miloslavina Y., Jahns P., Holzwarth A.R. On the relationship between non-photochemical quenching and photoprotection of Photosystem II. BBA-Bioenergetics. 2012;1817:760–769. doi: 10.1016/j.bbabio.2012.02.002. PubMed DOI

Fujita M., Fujita Y., Noutoshi Y., Takahashi F., Narusaka Y., Yamaguchi-Shinozaki K., Shinozaki K. Crosstalk between abiotic and biotic stress responses: A current view from the points of convergence in the stress signaling networks. Curr. Opin. Plant Biol. 2006;9:436–442. doi: 10.1016/j.pbi.2006.05.014. PubMed DOI

Hess F.D. Light-dependent herbicides: An overview. Weed Sci. 2000;48:160–170. doi: 10.1614/0043-1745(2000)048[0160:LDHAO]2.0.CO;2. DOI

Baxter A., Mittler R., Suzuki N. ROS as key players in plant stress signalling. J. Exp. Bot. 2014;65:1229–1240. doi: 10.1093/jxb/ert375. PubMed DOI

Song Y., Miao Y., Song C.-P. Behind the scenes: The roles of reactive oxygen species in guard cells. New Phytol. 2014;201:1121–1140. doi: 10.1111/nph.12565. PubMed DOI

Mittler R., Blumwald E. The Roles of ROS and ABA in Systemic Acquired Acclimation. Plant Cell. 2015;27:64–70. doi: 10.1105/tpc.114.133090. PubMed DOI PMC

Tuteja N. Abscisic Acid and Abiotic Stress Signaling. Plant Signal. Behav. 2007;2:135–138. doi: 10.4161/psb.2.3.4156. PubMed DOI PMC

Fanciullino A.L., Bidel L.P.R., Urban L. Carotenoid responses to environmental stimuli: Integrating redox and carbon controls into a fruit model. Plant Cell Environ. 2014;37:273–289. doi: 10.1111/pce.12153. PubMed DOI

Petrov V., Hille J., Mueller-Roeber B., Gechev T.S. ROS-mediated abiotic stress-induced programmed cell death in plants. Front. Plant Sci. 2015;6:69. doi: 10.3389/fpls.2015.00069. PubMed DOI PMC

Kalaji H.M., Schansker G., Brestic M., Bussotti F., Calatayud A., Ferroni L., Goltsev V., Guidi L., Jajoo A., Pengmin L., et al. Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynth. Res. 2017;132:13–66. doi: 10.1007/s11120-016-0318-y. PubMed DOI PMC

Schoefs B. Plant pigments: Properties, analysis, degradation. Adv. Food Nutr. Res. 2005;49:41–91. PubMed

Wise R.R., Naylor A.W. Chilling-Enhanced Photooxidation: Evidence for the Role of Singlet Oxygen and Superoxide in the Breakdown of Pigments and Endogenous Antioxidants. Plant Physiol. 1987;83:278–282. doi: 10.1104/pp.83.2.278. PubMed DOI PMC

Ramel F., Birtic S., Ginies C., Soubigou-Taconnat L., Triantaphylidès C., Havaux M. Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proc. Natl. Acad. Sci. USA. 2012;109:5535–5540. doi: 10.1073/pnas.1115982109. PubMed DOI PMC

Havaux M. Carotenoid oxidation products as stress signals in plants. Plant J. 2014;79:597–606. doi: 10.1111/tpj.12386. PubMed DOI

Schäfer L., Vioque A., Sandmann G. Functional in situ evaluation of photosynthesis-protecting carotenoids in mutants of the cyanobacterium Synechocystis PCC6803. J. Photochem. Photobiol. B. 2005;78:195–201. doi: 10.1016/j.jphotobiol.2004.11.007. PubMed DOI

Kusama Y., Inoue S., Jimbo H., Takaichi S., Sonoike K., Hihara Y., Nishiyama Y. Zeaxanthin and Echinenone Protect the Repair of Photosystem II from Inhibition by Singlet Oxygen in Synechocystis sp. PCC 6803. Plant Cell Physiol. 2015;56:906–916. doi: 10.1093/pcp/pcv018. PubMed DOI

Saito T., Miyabe Y., Ide H., Yamamoto O. Hydroxyl radical scavenging ability of bacterioruberin. Radiat. Phys. Chem. 1997;50:267–269. doi: 10.1016/S0969-806X(97)00036-4. DOI

De Oliveira V.E., Castro H.V., Edwards H.G.M., de Oliveira L.F.C. Carotenes and carotenoids in natural biological samples: A Raman spectroscopic analysis. J. Raman Spectrosc. 2010;41:642–650. doi: 10.1002/jrs.2493. DOI

Vítek P., Ascaso C., Artieda O., Casero M.C., Wierzchos J. Discovery of carotenoid red-shift in endolithic cyanobacteria from the Atacama Desert. Sci. Rep. 2017;7:1–10. doi: 10.1038/s41598-017-11581-7. PubMed DOI PMC

Edwards H.G.M., Moeller R., Villar S.E.J., Horneck G., Stackebrandt E. Raman spectroscopic study of the photoprotection of extremophilic microbes against ultraviolet radiation. Int. J. Astrobiol. 2006;5:313–318. doi: 10.1017/S147355040600348X. DOI

Vítek P., Osterrothová K., Jehlička J. Beta-carotene-A possible biomarker in the Martian evaporitic environment: Raman micro-spectroscopic study. Planet. Space Sci. 2009;57:454–459. doi: 10.1016/j.pss.2008.06.001. DOI

Ruban A.V., Pascal A.A., Robert B., Horton P. Configuration and Dynamics of Xanthophylls in Light-harvesting Antennae of Higher Plants: Spectroscopic analysis of isolated light-harvesting complex of photosystem II and thylakoid membranes. J. Biol. Chem. 2001;276:24862–24870. doi: 10.1074/jbc.M103263200. PubMed DOI

Ruban A.V., Pascal A., Lee P.J., Robert B., Horton P. Molecular Configuration of Xanthophyll Cycle Carotenoids in Photosystem II Antenna Complexes. J. Biol. Chem. 2002;277:42937–42942. doi: 10.1074/jbc.M207823200. PubMed DOI

Leinonen I., Jones H.G. Combining thermal and visible imagery for estimating canopy temperature and identifying plant stress. J. Exp. Bot. 2004;55:1423–1431. doi: 10.1093/jxb/erh146. PubMed DOI

Costa J.M., Grant O.M., Chaves M.M. Thermography to explore plant–environment interactions. J. Exp. Bot. 2013;64:3937–3949. doi: 10.1093/jxb/ert029. PubMed DOI

Neill S. Interactions between Abscisic Acid, Hydrogen Peroxide and Nitric Oxide Mediate Survival Responses during Water Stress. New Phytol. 2007;175:4–6. doi: 10.1111/j.1469-8137.2007.02112.x. PubMed DOI

Neill S., Barros R., Bright J., Desikan R., Hancock J., Harrison J., Morris P., Ribeiro D., Wilson I. Nitric oxide, stomatal closure, and abiotic stress. J. Exp. Bot. 2008;59:165–176. doi: 10.1093/jxb/erm293. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...