Analysis of defensive secretion of a milkweed bug Lygaeus equestris by 1D GC-MS and GC×GC-MS: sex differences and host-plant effect

. 2020 Feb 20 ; 10 (1) : 3092. [epub] 20200220

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32080314
Odkazy

PubMed 32080314
PubMed Central PMC7033152
DOI 10.1038/s41598-020-60056-9
PII: 10.1038/s41598-020-60056-9
Knihovny.cz E-zdroje

The composition of defensive secretion produced by metathoracic scent glands was analysed in males and females of the milkweed bug Lygaeus equestris (Heteroptera) using gas chromatography with mass spectrometric detection (GC-MS). The bugs were raised either on cardenolide-containing Adonis vernalis or on control sunflower seeds in order to determine whether the possibility to sequester cardenolides from their host plants would affect the composition of defensive scent-gland secretion. Profiles of the composition of defensive secretions of males and females raised on sunflower were closely similar, with predominant presence of (E)-2-octenal, (E)-2-octen-1-ol, decanal and 3-octen-1-ol acetate. The secretion of bugs raised on A. vernalis was more sexually dimorphic, and some chemicals e.g. (E,E)-2,4-hexadienyl acetate and 2-phenylethyl acetate were dominant in males, but absent in females. Compared to bugs from sunflower, the scent-gland secretion of bugs raised on A. vernalis was characterized by lower overall intensity of the peaks obtained for detected chemicals and by absence of some chemicals that have supposedly antipredatory function ((E)-2-hexenal, (E)-4-oxo-hex-2-enal, 2,4-octadienal). The results suggest that there might be a trade-off between the sequestration of defensive chemicals from host plants and their synthesis in metathoracic scent-glands.

Zobrazit více v PubMed

Ruxton, G. D., Sherratt, T. N. & Speed, M. P. Avoiding attack: the evolutionary ecology of crypsis, warning signals, and mimicry. (Oxford University Press, (2004).

Ruxton, G. D., Allen, W. L., Sherratt, T. N. & Speed, M. P. Avoiding attack - The evolutionary ecology of crypsis, aposematism, and mimicry. (Oxford University Press, (2018).

Blum, M. S. Chemical defenses of arthropods. (Academic Press, (1981).

Eisner, T., Eisner, M. & Siegler, M. Secret weapons: Defenses of insects, spiders, scorpions, and other many-legged creatures. (Belknap Press, (2007).

Zvereva EL, Kozlov MV. The costs and effectiveness of chemical defenses in herbivorous insects: a meta-analysis. Eco. Monogr. 2016;86:107–124. doi: 10.1890/15-0911.1. DOI

Aldrich JR. Chemical ecology of the Heteroptera. Annu. Rev. Entomol. 1988;33:211–238. doi: 10.1146/annurev.en.33.010188.001235. DOI

Schuh, R. T. & Slater, J. A. The true bugs of the world (Hemiptera: Heteroptera). Classification and natural history. (Cornell University Press, (1995).

Staddon, B. W. in Advances in Insect Physiology vol. 14 (eds. J. E. Treherne, M. J. Berridge, & V. B. Wigglesworth) 351–418 (Academic Press, (1979).

Svadova KH, Exnerova A, Kopeckova M, Stys P. How do predators learn to recognize a mimetic complex: Experiments with naive great tits and aposematic Heteroptera. Ethology. 2013;119:814–830. doi: 10.1111/eth.12121. DOI

Farine JP, Bonnard O, Brossut R, Lequere JL. Chemistry of pheromonal and defensive secretions in the nymphs and the adults of Dysdercus cingulatus Fabr. (Heteroptera, Pyrrhocoridae) J. Chem. Ecology. 1992;18:65–76. doi: 10.1007/bf00997165. PubMed DOI

Krajicek Jan, Havlikova Martina, Bursova Miroslava, Ston Martin, Cabala Radomir, Exnerova Alice, Stys Pavel, Bosakova Zuzana. Comparative Analysis of Volatile Defensive Secretions of Three Species of Pyrrhocoridae (Insecta: Heteroptera) by Gas Chromatography-Mass Spectrometric Method. PLOS ONE. 2016;11(12):e0168827. doi: 10.1371/journal.pone.0168827. PubMed DOI PMC

Moraes MCB, Pareja M, Laumann RA, Borges M. The chemical volatiles (semiochemicals) produced by neotropical stink bugs (Hemiptera: Pentatomidae) Neotrop. Entomol. 2008;37:489–505. doi: 10.1590/s1519-566x2008000500001. PubMed DOI

Vet LEM. From chemical to population ecology: Infochemical use in an evolutionary context. J. Chem. Ecology. 1999;25:31–49. doi: 10.1023/a:1020833015559. DOI

Ho HY, Millar JG. Compounds in metathoracic glands of adults and dorsal abdominal glands of nymphs of the stink bugs, Chlorochroa uhleri, C. sayi, and C. ligata (Hemiptera: Pentatomidae) Zool. Stud. 2001;40:193–198.

Gunawardena NE. Seasonal changes in the chemical composition of the defensive secretion of the rice pest Leptocorisa oratorius (Hemiptera:Coreidae) J. Natl. Sci. Counc. Sri Lanka. 1994;22:239–243. doi: 10.4038/jnsfsr.v22i3.8125. DOI

Farine JP, Bonnard O, Brossut R, Lequere JL. Chemistry of defensive secretion in nymphs and adults of fire bug, Pyrrhocoris apterus (Heteroptera, Pyrrhocoridae) J. Chem. Ecology. 1992;18:1673–1682. doi: 10.1007/bf02751094. PubMed DOI

Ho HY, Kou R, Tseng HK. Semiochemicals from the predatory stink bug Eocanthecona furcellata (Wolff): Components of metathoracic gland, dorsal abdominal gland, and sternal gland secretions. J. Chem. Ecology. 2003;29:2101–2114. doi: 10.1023/a:1025638502980. PubMed DOI

Durak D, Kalender Y. Fine structure and chemical analysis of the metathoracic scent gland secretion in Graphosoma lineatum (Linnaeus, 1758) (Heteroptera, Pentatomidae) C. R. Biol. 2009;332:34–42. doi: 10.1016/j.crvi.2008.10.004. PubMed DOI

Djozan D, Baheri T, Farshbaf R, Azhari S. Investigation of solid-phase microextraction efficiency using pencil lead fiber for in vitro and in vivo sampling of defensive volatiles from insect’s scent gland. Anal. Chim. Acta. 2005;554:197–201. doi: 10.1016/j.aca.2005.08.049. DOI

Stransky K, Valterova I, Ubik K, Cejka J, Krecek J. Volatiles from stink bug, Graphosoma lineatum (L.), and from green shield bug, Palomena prasina (L.), (Heteroptera: Pentatomidae) J. High Resolut. Chrom. 1998;21:475–476. doi: 10.1002/(SICI)1521-4168(19980801)21:8<475::AID-JHRC475>3.0.CO;2-S. DOI

Sanda M, Zacek P, Streinz L, Dracinsky M, Koutek B. Profiling and characterization of volatile secretions from the European stink bug Graphosoma lineatum (Heteroptera: Pentatomidae) by two-dimensional gas chromatography/time-of-flight mass spectrometry. J. Chromatogr. B. 2012;881-82:69–75. doi: 10.1016/j.jchromb.2011.11.043. PubMed DOI

Cortes HJ, Winniford B, Luong J, Pursch M. Comprehensive two dimensional gas chromatography review. J. Sep. Sci. 2009;32:883–904. doi: 10.1002/jssc.200800654. PubMed DOI

Shi XZ, Wang SY, Yang Q, Lu X, Xu GW. Comprehensive two-dimensional chromatography for analyzing complex samples: recent new advances. Anal. Methods. 2014;6:7112–7123. doi: 10.1039/c4ay01055h. DOI

Cordero C, Rubiolo P, Sgorbini B, Galli M, Bicchi C. Comprehensive two-dimensional gas chromatography in the analysis of volatile samples of natural origin: A multidisciplinary approach to evaluate the influence of second dimension column coated with mixed stationary phases on system orthogonality. J. Chromatogr. A. 2006;1132:268–279. doi: 10.1016/j.chroma.2006.07.067. PubMed DOI

Edwards M, Mostafa A, Gorecki T. Modulation in comprehensive two-dimensional gas chromatography: 20 years of innovation. Anal. Bioanal. Chem. 2011;401:2335–2349. doi: 10.1007/s00216-011-5100-6. PubMed DOI

Duffey SS, Scudder GGE. Cardiac-glycosides in North-American Asclepiadaceae, a basis for unpalatability in brightly colored Hemiptera and Coleoptera. J. Insect Physiol. 1972;18:63–78. doi: 10.1016/0022-1910(72)90065-0. DOI

Dobler S, Petschenka G, Pankoke H. Coping with toxic plant compounds - The insect’s perspective on iridoid glycosides and cardenolides. Phytochem. 2011;72:1593–1604. doi: 10.1016/j.phytochem.2011.04.015. PubMed DOI

Agrawal AA, Petschenka G, Bingham RA, Weber MG, Rasmann S. Toxic cardenolides: chemical ecology and coevolution of specialized plant-herbivore interactions. New Phytol. 2012;194:28–45. doi: 10.1111/j.1469-8137.2011.04049.x. PubMed DOI

Hansen O. Interaction of cardiac-glycosides with (Na+/K+)-activated ATPase - A biochemical link to Digitalis-induces inotropy. Pharmacol. Rev. 1984;36:143–163. PubMed

Dobler S, Petschenka G, Wagschal V, Flacht L. Convergent adaptive evolution - how insects master the challenge of cardiac glycoside-containing host plants. Entomol. Exp. Appl. 2015;157:30–39. doi: 10.1111/eea.12340. DOI

Bramer Christiane, Dobler Susanne, Deckert Jürgen, Stemmer Michael, Petschenka Georg. Na + /K + -ATPase resistance and cardenolide sequestration: basal adaptations to host plant toxins in the milkweed bugs (Hemiptera: Lygaeidae: Lygaeinae) Proceedings of the Royal Society B: Biological Sciences. 2015;282(1805):20142346. doi: 10.1098/rspb.2014.2346. PubMed DOI PMC

Bramer C, Friedrich F, Dobler S. Defence by plant toxins in milkweed bugs (Heteroptera: Lygaeinae) through the evolution of a sophisticated storage compartment. Syst. Entomol. 2017;42:15–30. doi: 10.1111/syen.12189. DOI

Scudder GGE, Duffey SS. Cardiac-glycosides in Lygaeinae (Hemiptera-Lygaeidae) Can. J. Zool. 1972;50:35–42. doi: 10.1139/z72-007. DOI

Duffey SS, Blum MS, Isman MB, Scudder GGE. Cardiac glycosides: A physical system for their sequestration by the milkweed bug. J. Insect Physiol. 1978;24:639–645. doi: 10.1016/0022-1910(78)90127-0. DOI

Solbreck C. Sexual cycle, and changes in feeding activity and fat body size in relation to migration in Lygaeus equestris (L.) (Het., Lygaeidae) Insect Syst. Evol. 1972;3:267–274. doi: 10.1163/187631272X00148. DOI

Tullberg BS, Gamberale-Stille G, Solbreck C. Effects of food plant and group size on predator defence: differences between two co-occurring aposematic Lygaeinae bugs. Eco. Entomol. 2000;25:220–225. doi: 10.1046/j.1365-2311.2000.00238.x. DOI

Berenbaum MR, Miliczky E. Mantids and milkweed bugs - Efficacy of aposematic coloration against invertebrate predators. Am. Midl. Nat. 1984;111:64–68. doi: 10.2307/2425543. DOI

Skow CD, Jakob EM. Jumping spiders attend to context during learned avoidance of aposematic prey. Behav. Ecol. 2006;17:34–40. doi: 10.1093/beheco/ari094. DOI

Bowers, M. D., Roitberg, B. D. & Isman, M. B. in Insect chemical ecology: an evolutionary approach, 216–244 (Springer, (1992).

Engler-Chaouat HS, Gilbert LE. De novo synthesis vs.sequestration: Negatively correlated metabolic traits and the evolution of host plant specialization in cyanogenic butterflies. J. Chem. Ecology. 2007;33:25–42. doi: 10.1007/s10886-006-9207-8. PubMed DOI

Zvereva EL, Zverev V, Kruglova OY, Kozlov MV. Strategies of chemical anti-predator defences in leaf beetles: is sequestration of plant toxins less costly than de novo synthesis? Oecologia. 2017;183:93–106. doi: 10.1007/s00442-016-3743-x. PubMed DOI

Zvereva EL, et al. Defence strategies of Chrysomela lapponica (Coleoptera: Chrysomelidae) larvae: relative efficacy of secreted and stored defences against insect and avian predators. Biol. J. Linn. Soc. 2018;124:533–546. doi: 10.1093/biolinnean/bly045. DOI

Aldrich JR, Oliver JE, Taghizadeh T, Ferreira JTB, Liewehr D. Pheromones and colonization: reassessment of the milkweed bug migration model (Heteroptera: Lygaeidae: Lygaeinae) Chemoecology. 1999;9:63–71. doi: 10.1007/s000490050035. DOI

Staddon BW, Gough AJE, Olagbemiro TO, Games DE. Sex dimorphism for ester production in the matathoracic scent gland of the Lygaeid bug Spilostethus rivularis (Germar) (Heteroptera) Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 1985;80:235–239. doi: 10.1016/0305-0491(85)90202-0. DOI

Aldrich JR, et al. Semiochemistry of aposematic seed bugs. Entomol. Exp. Appl. 1997;84:127–135. doi: 10.1046/j.1570-7458.1997.00207.x. DOI

Millar, J. G. in The Chemistry of Pheromones and Other Semiochemicals II (ed. Stefan Schulz), 37-84 (Springer Berlin Heidelberg, (2005).

Riba M, Rosell JA, Eizaguirre M, Canela R, Guerrero A. Identification of a minor component of the sex-pheromone of Leucoptera malifoliella (Lepidoptera, lyonetiidae) J. Chem. Ecology. 1990;16:1471–1483. doi: 10.1007/bf01014082. PubMed DOI

Brower LP, McEvoy PB, Williamson KL, Flannery MA. Variation in cardiac glycoside content of monarch butterflies from natural populations in eastern North America. Science. 1972;177:426–429. doi: 10.1126/science.177.4047.426. PubMed DOI

Zhang QH, Aldrich JR. Pheromones of milkweed bugs (Heteroptera: Lygaeidae) attract wayward plant bugs: Phytocoris mirid sex pheromone. J. Chem. Ecology. 2003;29:1835–1851. doi: 10.1023/a:1024850211619. PubMed DOI

Staddon BW. Biology of scent glands in the Hemiptera-Heteroptera. Ann. Soc. Entomol. Fr. 1986;22:183–190.

Scudder GGE, Moore LV, Isman MB. Sequestration of cardenolides in Oncopeltus fasciatus: Morphological and physiological adaptations. J. Chem. Ecology. 1986;12:1171–1187. doi: 10.1007/bf01639003. PubMed DOI

Prudic KL, Noge K, Becerra JX. Adults and nymphs do not smell the same: The different defensive compounds of the giant mesquite bug (Thasus neocalifornicus: Coreidae) J. Chem. Ecology. 2008;34:734. doi: 10.1007/s10886-008-9480-9. PubMed DOI

Remold H. Scent-glands of land-bugs, their physiology and biological function. Nature. 1963;198:764–768. doi: 10.1038/198764a0. DOI

Gregorovicova M, Cernikova A. Reactions of green lizards (Lacerta viridis) to major repellent compounds secreted by Graphosoma lineatum (Heteroptera: Pentatomidae) Zoology. 2015;118:176–182. doi: 10.1016/j.zool.2015.02.001. PubMed DOI

Gregorovicova M, Cernikova A. Reactions of leopard geckos (Eublepharis macularius) to defensive secretion of Graphosoma lineatum (Heteroptera Pentatomidae): an experimental approach. Ethol. Ecol. Evol. 2016;28:367–384. doi: 10.1080/03949370.2015.1059895. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...