• This record comes from PubMed

Expression of Selected Connexin and Aquaporin Genes and Real-Time Proliferation of Porcine Endometrial Luminal Epithelial Cells in Primary Culture Model

. 2020 ; 2020 () : 7120375. [epub] 20200203

Language English Country United States Media electronic-ecollection

Document type Journal Article

Luminal epithelial cells are the first embryonic-maternal contact site undergoing very specific changes associated with reproductive processes. Cells prepare for embryo development by increasing their volume, with the help of aquaporins that provide a transcellular path of rapid water movement during the secretion and absorption of fluids, as well as connexins enabling the flow of inorganic ions and small molecules. In this work, we have examined how AQPs and Cx's behave in luminal epithelium primary cell culture. Cells obtained from porcine specimen during slaughter were primarily in vitro cultured for 7 days. Their proliferation patterns were then analyzed using RTCA, with the expression of genes of interest evaluated with the use of immunofluorescence and RT-qPCR. The results of these changes of gene of interest expression were analyzed on each of the seven days of the porcine luminal primary cell culture. Our study showed that the significant changes were noted in the case of Cx43, whose level of protein expression and distribution increases after 120 hours of culture, when the cells enter the lag phase, and maintains an upward trend until the end of the culture. We noted an increase in AQP4, AQP7, AQP8, and AQP11 levels throughout the entire culture period, while the largest differences in expression were found in AQP3, AQP4, and AQP10. The obtained results could become a point of reference for further in vivo and clinical research. Experiments conducted with these proteins showed that they influence the endometrial fluid content during the oestrous cycle and participate in the process of angiogenesis, which intensifies during endometrial development.

See more in PubMed

Firestone G. L., Kapadia B. J. Minireview: regulation of gap junction dynamics by nuclear hormone receptors and their ligands. Molecular Endocrinology. 2012;26(11):1798–1807. doi: 10.1210/me.2012-1065. PubMed DOI PMC

Nielsen M. S., Axelsen L. N., Sorgen P. L., Verma V., Delmar M., Holstein-Rathlou N.-H. Gap junctions. Comprehensive Physiology. 2012;2(3):1981–2035. doi: 10.1002/cphy.c110051. PubMed DOI PMC

Dan Y., Miller A. C., Whitebirch A. C., et al. A genetic basis for molecular asymmetry at vertebrate electrical synapses. elife. 2017;6 doi: 10.7554/elife.25364. PubMed DOI PMC

Iwanaga S., Shimizu M., Matsufuji Y., et al. Alterations in gap junctions of human endometrial epithelial cells during normal menstrual cycle. Freeze-fracture electron microscopic study. The Kurume Medical Journal. 1990;37(2):111–115. doi: 10.2739/kurumemedj.37.111. PubMed DOI

Matson B. C., Pierce S. L., Espenschied S. T., et al. Adrenomedullin improves fertility and promotes pinopodes and cell junctions in the peri-implantation endometrium†. Biology of Reproduction. 2017;97(3):466–477. doi: 10.1093/biolre/iox101. PubMed DOI PMC

Ciesiółka S., Budna J., Jopek K., et al. Time- and dose-dependent effects of 17 beta-estradiol on short-term, real-time proliferation and gene expression in porcine granulosa cells. BioMed Research International. 2017;2017:9. doi: 10.1155/2017/9738640.9738640 PubMed DOI PMC

Aralla M., Borromeo V., Groppetti D., Secchi C., Cremonesi F., Arrighi S. A collaboration of aquaporins handles water transport in relation to the estrous cycle in the bitch uterus. Theriogenology. 2009;72(3):310–321. doi: 10.1016/j.theriogenology.2009.01.023. PubMed DOI

Magas M., Szczepańska K., Jankowski M., Bukowska D., Antosik P. Splenic leiomyoma in dog. Medical Journal of Cell Biology. 2018;6(1):8–12. doi: 10.2478/acb-2018-0002. DOI

Kohda D., Morton C. J., Parkar A. A., et al. Solution structure of the link module: a hyaluronan-binding domain involved in extracellular matrix stability and cell migration. Cell. 1996;86(5):767–775. doi: 10.1016/s0092-8674(00)80151-8. PubMed DOI

Agre P. The aquaporin water channels. Proceedings of the American Thoracic Society. 2006;3(1):5–13. doi: 10.1513/pats.200510-109jh. PubMed DOI PMC

Skowronski M. T. Distribution and quantitative changes in amounts of aquaporin 1, 5 and 9 in the pig uterus during the estrous cycle and early pregnancy. Reproductive Biology and Endocrinology. 2010;8(1):p. 109. doi: 10.1186/1477-7827-8-109. PubMed DOI PMC

Dunning K. R., Watson L. N., Zhang V. J., et al. Activation of mouse cumulus-oocyte complex maturation in vitro through EGF-like activity of Versican1. Biology of Reproduction. 2015;92(5):p. 116. doi: 10.1095/biolreprod.114.127274. PubMed DOI

Jankowski M., Dyszkiewicz-Konwińska M., Budna J., et al. The differentiation and transdifferentiation of epithelial cells in vitro - is it a new strategy in regenerative biomedicine? Medical Journal of Cell Biology. 2018;6(1):27–32. doi: 10.2478/acb-2018-0005. DOI

Rybska M., Knap S., Jankowski M., et al. Cytoplasmic and nuclear maturation of oocytes in mammals - living in the shadow of cells developmental capability. Medical Journal of Cell Biology. 2018;6(1):13–17. doi: 10.2478/acb-2018-0003. DOI

Kranc W., Jankowski M., Budna J., et al. Amino acids metabolism and degradation is regulated during porcine oviductal epithelial cells (OECs) primary culture in vitro—a signaling pathways activation approach. Medical Journal of Cell Biology. 2018;6(1):18–26. doi: 10.2478/acb-2018-0004. DOI

Rybska M., Knap S., Jankowski M., et al. Characteristic of factors influencing the proper course of folliculogenesis in mammals. Medical Journal of Cell Biology. 2018;6(1):33–38. doi: 10.2478/acb-2018-0006. DOI

Jankowski M., Dyszkiewicz-Konwińska M., Budna J., et al. Does migrative and proliferative capability of epithelial cells reflect cellular developmental competence? Medical Journal of Cell Biology. 2018;6(1):1–7. doi: 10.2478/acb-2018-0001. DOI

Kranc W., Brązert M., Ożegowska K., et al. Response to abiotic and organic substances stimulation belongs to ontologic groups significantly up-regulated in porcine immature oocytes. Medical Journal of Cell Biology. 2018;6(3):91–100. doi: 10.2478/acb-2018-0015. DOI

Nawrocki M. J., Budna J., Celichowski P., et al. Analysis of fructose and mannose - regulatory peptides signaling pathway in porcine epithelial oviductal cells (OECs) primary cultured long-term in vitro. Advances in Cell Biology. 2017;5(2):129–135. doi: 10.1515/acb-2017-0011. DOI

Meşe G., Richard G., White T. W. Gap junctions: basic structure and function. Journal of Investigative Dermatology. 2007;127(11):2516–2524. doi: 10.1038/sj.jid.5700865. PubMed DOI

Santiquet N., Robert C., Richard F. J. The dynamics of connexin expression, degradation and localisation are regulated by gonadotropins during the early stages of in vitro maturation of swine oocytes. PLoS One. 2013;8(7) doi: 10.1371/journal.pone.0068456.e68456 PubMed DOI PMC

Johnson M. L., Redmer D. A., Reynolds L. P., Grazul-Bilska A. T. Gap junctional connexin messenger RNA expression in the ovine uterus and placenta: effects of estradiol-17β-treatment, early pregnancy stages, and embryo origin. Domestic Animal Endocrinology. 2017;58:104–112. doi: 10.1016/j.domaniend.2016.09.004. PubMed DOI

Noureldin M., Chen H., Bai D. Functional characterization of novel atrial fibrillation-linked GJA5 (Cx40) mutants. International Journal of Molecular Sciences. 2018;19(4):977. doi: 10.3390/ijms19040977. PubMed DOI PMC

Xu Q., Kopp R. F., Chen Y., Yang J. J., Roe M. W., Veenstra R. D. Gating of connexin 43 gap junctions by a cytoplasmic loop calmodulin binding domain. American Journal of Physiology-Cell Physiology. 2012;302(10):C1548–C1556. doi: 10.1152/ajpcell.00319.2011. PubMed DOI PMC

Shinohara K., Funabashi T., Nakamura T. J., Kimura F. Effects of estrogen and progesterone on the expression of connexin-36 mRNA in the suprachiasmatic nucleus of female rats. Neuroscience Letters. 2001;309(1):37–40. doi: 10.1016/s0304-3940(01)02022-5. PubMed DOI

Raškevičius V., Jotautis V., Rimkutė L., et al. Molecular basis for potentiation of Cx36 gap junction channel conductance byn-alcohols and general anesthetics. Bioscience Reports. 2018;38(1) doi: 10.1042/bsr20171323. PubMed DOI PMC

Zhu C., Jiang Z., Bazer F. W., Johnson G. A., Burghardt R. C., Wu G. Aquaporins in the female reproductive system of mammals. Frontiers in Bioscience. 2015;20(5):838–871. doi: 10.2741/4341. PubMed DOI

Amann B., Kleinwort K., Hirmer S., et al. Expression and distribution pattern of aquaporin 4, 5 and 11 in retinas of 15 different species. International Journal of Molecular Sciences. 2016;17(7):p. 1145. doi: 10.3390/ijms17071145. PubMed DOI PMC

Huang H.-F., He R.-H., Sun C.-C., Zhang Y., Meng Q.-X., Ma Y.-Y. Function of aquaporins in female and male reproductive systems. Human Reproduction Update. 2006;12(6):785–795. doi: 10.1093/humupd/dml035. PubMed DOI

Skowronski M. T., Kwon T.-H., Nielsen S. Immunolocalization of aquaporin 1, 5, and 9 in the female pig reproductive system. Journal of Histochemistry and Cytochemistry. 2009;57(1):61–67. doi: 10.1369/jhc.2008.952499. PubMed DOI PMC

Bründl J., Wallinger S., Breyer J., et al. Expression, localisation and potential significance of aquaporins in benign and malignant human prostate tissue. BMC Urology. 2018;18(1):p. 75. doi: 10.1186/s12894-018-0391-y. PubMed DOI PMC

Zelenina M., Christensen B. M., Palmér J., Nairn A. C., Nielsen S., Aperia A. Prostaglandin E2 interaction with AVP: effects on AQP2 phosphorylation and distribution. American Journal of Physiology-Renal Physiology. 2000;278(3):F388–F394. doi: 10.1152/ajprenal.2000.278.3.f388. PubMed DOI

Skowronska A., Mlotkowska P., Majewski M., Nielsen S., Skowronski M. T. Expression of aquaporin 1 and 5 and their regulation by ovarian hormones, arachidonic acid, forskolin and cAMP during implantation in pigs. Physiological Research. 2016;65(4):637–650. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...