Functionalization of the Parylene C Surface Enhances the Nucleation of Calcium Phosphate: Combined Experimental and Molecular Dynamics Simulations Approach
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
32098467
PubMed Central
PMC7497617
DOI
10.1021/acsami.9b20877
Knihovny.cz E-zdroje
- Klíčová slova
- calcium phosphate, functional groups, molecular dynamics, nucleation mechanism, parylene C, polymer surface,
- Publikační typ
- časopisecké články MeSH
Interactions at the solid-body fluid interfaces play a vital role in bone tissue formation at the implant surface. In this study, fully atomistic molecular dynamics (MD) simulations were performed to investigate interactions between the physiological components of body fluids (Ca2+, HPO42-, H2PO4-, Na+, Cl-, and H2O) and functionalized parylene C surface. In comparison to the native parylene C (-Cl surface groups), the introduction of -OH, -CHO, and -COOH surface groups significantly enhances the interactions between body fluid ions and the polymeric surface. The experimentally observed formation of calcium phosphate nanocrystals is discussed in terms of MD simulations of the calcium phosphate clustering. Surface functional groups promote the clustering of calcium and phosphate ions in the following order: -OH > -CHO > -Cl (parent parylene C) ≈ -COO-. This promoting role of surface functional groups is explained as stimulating the number of Ca2+ and HPO42- surface contacts as well as ion chemisorption. The molecular mechanism of calcium phosphate cluster formation at the functionalized parylene C surface is proposed.
Department of Physics University of Helsinki P O Box 64 FI 00014 Helsinki Finland
Faculty of Chemistry Jagiellonian University Gronostajowa 2 30 387 Krakow Poland
Zobrazit více v PubMed
Keum H.; Kim J. Y.; Yu B.; Yu S. J.; Kim J.; Jeon H.; Lee D. Y.; Im S. G.; Jon S. Prevention of Bacterial Colonization on Catheters by a One-Step Coating Process Involving an Antibiofouling Polymer in Water. ACS Appl. Mater. Interfaces 2017, 9, 19736–19745. 10.1021/acsami.7b06899. PubMed DOI
Kim Y. H.; Park J.; Koo H.; Kim M. S.; Jung S.-D. Fluoropolymer-Based Flexible Neural Prosthetic Electrodes for Reliable Neural Interfacing. ACS Appl. Mater. Interfaces 2017, 9, 43420–43428. 10.1021/acsami.7b12364. PubMed DOI
Green R.; Abidian M. R. Conducting Polymers for Neural Prosthetic and Neural Interface Applications. Adv. Mater. 2015, 27, 7620–7637. 10.1002/adma.201501810. PubMed DOI PMC
Ambrose C. G.; Hartline B. E.; Clanton T. O.; Lowe W. R.; McGarvey W. C.. Polymers in Orthopaedic Surgery. Advanced Polymers in Medicine; Springer International Publishing: Cham, 2015; pp 129–145.
Kuppusami S.; Oskouei R. H. Parylene Coatings in Medical Devices and Implants: A Review. Univers. J. Biomed. Eng. 2015, 3, 9–14. 10.13189/ujbe.2015.030201. DOI
Cieślik M.; Zimowski S.; Gołda M.; Engvall K.; Pan J.; Rakowski W.; Kotarba A. Engineering of Bone Fixation Metal Implants Biointerface - Application of Parylene C as Versatile Protective Coating. Mater. Sci. Eng., C 2012, 32, 2431–2435. 10.1016/j.msec.2012.07.018. DOI
Hassler C.; von Metzen R. P.; Ruther P.; Stieglitz T. Characterization of Parylene C as an Encapsulation Material for Implanted Neural Prostheses. J. Biomed. Mater. Res., Part B 2010, 9999B, 266.10.1002/jbm.b.31584. PubMed DOI
Cieślik M.; Kot M.; Reczyński W.; Engvall K.; Rakowski W.; Kotarba A. Parylene Coatings on Stainless Steel 316L Surface for Medical Applications - Mechanical and Protective Properties. Mater. Sci. Eng., C 2012, 32, 31–35. 10.1016/j.msec.2011.09.007. PubMed DOI
Golda-Cepa M.; Engvall K.; Kotarba A. Development of Crystalline–Amorphous Parylene C Structure in Micro- and Nano-Range towards Enhanced Biocompatibility: The Importance of Oxygen Plasma Treatment Time. RSC Adv. 2015, 5, 48816–48821. 10.1039/c5ra06366c. DOI
Golda-Cepa M.; Chorylek A.; Chytrosz P.; Brzychczy-Wloch M.; Jaworska J.; Kasperczyk J.; Hakkarainen M.; Engvall K.; Kotarba A. Multifunctional PLGA/Parylene C Coating for Implant Materials: An Integral Approach for Biointerface Optimization. ACS Appl. Mater. Interfaces 2016, 8, 22093–22105. 10.1021/acsami.6b08025. PubMed DOI
Staufert S.; Gutzwiller P.; Mushtaq F.; Hierold C. Surface Nanostructuring of Ti6Al4V Surfaces for Parylene-C Coatings with Ultradurable Adhesion. ACS Appl. Nano Mater. 2018, 1, 1586–1594. 10.1021/acsanm.8b00081. DOI
Golda-Cepa M.; Chytrosz P.; Chorylek A.; Kotarba A. One-Step Sonochemical Fabrication and Embedding of Gentamicin Nanoparticles into Parylene C Implant Coating: Towards Controlled Drug Delivery. Nanomedicine 2018, 14, 941–950. 10.1016/j.nano.2018.01.012. PubMed DOI
Xie X.; Rieth L.; Williams L.; Negi S.; Bhandari R.; Caldwell R.; Sharma R.; Tathireddy P.; Solzbacher F. Long-Term Reliability of Al2O3 and Parylene C Bilayer Encapsulated Utah Electrode Array Based Neural Interfaces for Chronic Implantation. J. Neural. Eng. 2014, 11, 026016.10.1088/1741-2560/11/2/026016. PubMed DOI PMC
Kim B. J.; Meng E. Micromachining of Parylene C for BioMEMS. Polym. Adv. Technol. 2016, 27, 564–576. 10.1002/pat.3729. DOI
Gentleman M. M.; Gentleman E. The Role of Surface Free Energy in Osteoblast–Biomaterial Interactions. Int. Mater. Rev. 2014, 59, 417–429. 10.1179/1743280414Y.0000000038. DOI
Yang Y.; Qi P.; Wen F.; Li X.; Xia Q.; Maitz M. F.; Yang Z.; Shen R.; Tu Q.; Huang N. Mussel-Inspired One-Step Adherent Coating Rich in Amine Groups for Covalent Immobilization of Heparin: Hemocompatibility, Growth Behaviors of Vascular Cells, and Tissue Response. ACS Appl. Mater. Interfaces 2014, 6, 14608–14620. 10.1021/am503925r. PubMed DOI
Brancato L.; Decrop D.; Lammertyn J.; Puers R.; Brancato L.; Decrop D.; Lammertyn J.; Puers R. Surface Nanostructuring of Parylene-C Coatings for Blood Contacting Implants. Materials 2018, 11, 1109.10.3390/ma11071109. PubMed DOI PMC
Trantidou T.; Rao C.; Barrett H.; Camelliti P.; Pinto K.; Yacoub M. H.; Athanasiou T.; Toumazou C.; Terracciano C. M.; Prodromakis T. Selective Hydrophilic Modification of Parylene C Films: A New Approach to Cell Micro-Patterning for Synthetic Biology Applications. Biofabrication 2014, 6, 025004.10.1088/1758-5082/6/2/025004. PubMed DOI
Lin J.; Chen X.; Chen C.; Hu J.; Zhou C.; Cai X.; Wang W.; Zheng C.; Zhang P.; Cheng J.; Guo Z.; Liu H. Durably Antibacterial and Bacterially Antiadhesive Cotton Fabrics Coated by Cationic Fluorinated Polymers. ACS Appl. Mater. Interfaces 2018, 10, 6124–6136. 10.1021/acsami.7b16235. PubMed DOI
Gołda M.; Brzychczy-Włoch M.; Faryna M.; Engvall K.; Kotarba A. Oxygen Plasma Functionalization of Parylene C Coating for Implants Surface: Nanotopography and Active Sites for Drug Anchoring. Mater. Sci. Eng., C 2013, 33, 4221–4227. 10.1016/j.msec.2013.06.014. PubMed DOI
Golda-Cepa M.; Brzychczy-Wloch M.; Engvall K.; Aminlashgari N.; Hakkarainen M.; Kotarba A. Microbiological Investigations of Oxygen Plasma Treated Parylene C Surfaces for Metal Implant Coating. Mater. Sci. Eng., C 2015, 52, 273–281. 10.1016/j.msec.2015.03.060. PubMed DOI
Cheruthazhekatt S.; Černák M.; Slavíček P.; Havel J. Gas Plasmas and Plasma Modified Materials in Medicine. J. Appl. Biomed. 2010, 8, 55–66. 10.2478/V10136-009-0013-9. DOI
Nandakumar A.; Tahmasebi Birgani Z.; Santos D.; Mentink A.; Auffermann N.; van der Werf K.; Bennink M.; Moroni L.; van Blitterswijk C.; Habibovic P. Surface Modification of Electrospun Fibre Meshes by Oxygen Plasma for Bone Regeneration. Biofabrication 2012, 5, 015006.10.1088/1758-5082/5/1/015006. PubMed DOI
Jacobs T.; Morent R.; De Geyter N.; Dubruel P.; Leys C. Plasma Surface Modification of Biomedical Polymers: Influence on Cell-Material Interaction. Plasma Chem. Plasma Process. 2012, 32, 1039–1073. 10.1007/s11090-012-9394-8. DOI
Kini U.; Nandeesh B. N.. Physiology of Bone Formation, Remodeling, and Metabolism. Radionuclide and Hybrid Bone Imaging; Springer Berlin Heidelberg: Berlin, Heidelberg, 2012; pp 29–57.
Huang L.; Zhou B.; Wu H.; Zheng L.; Zhao J. Effect of Apatite Formation of Biphasic Calcium Phosphate Ceramic (BCP) on Osteoblastogenesis Using Simulated Body Fluid (SBF) with or without Bovine Serum Albumin (BSA). Mater. Sci. Eng., C 2017, 70, 955–961. 10.1016/j.msec.2016.05.115. PubMed DOI
Kim H. D.; Amirthalingam S.; Kim S. L.; Lee S. S.; Rangasamy J.; Hwang N. S. Biomimetic Materials and Fabrication Approaches for Bone Tissue Engineering. Adv. Healthcare Mater. 2017, 6, 1700612.10.1002/adhm.201700612. PubMed DOI
Shih Y.-R. V.; Hwang Y.; Phadke A.; Kang H.; Hwang N. S.; Caro E. J.; Nguyen S.; Siu M.; Theodorakis E. A.; Gianneschi N. C.; Vecchio K. S.; Chien S.; Lee O. K.; Varghese S. Calcium Phosphate-Bearing Matrices Induce Osteogenic Differentiation of Stem Cells through Adenosine Signaling. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 990–995. 10.1073/PNAS.1321717111. PubMed DOI PMC
Habraken W. J. E. M.; Tao J.; Brylka L. J.; Friedrich H.; Bertinetti L.; Schenk A. S.; Verch A.; Dmitrovic V.; Bomans P. H. H.; Frederik P. M.; Laven J.; van der Schoot P.; Aichmayer B.; de With G.; DeYoreo J. J.; Sommerdijk N. A. J. M.. Ion-Association Complexes Unite Classical and Non-Classical Theories for the Biomimetic Nucleation of Calcium Phosphate. Nat. Commun. 2013, 4. 10.1038/ncomms2490. PubMed DOI
Xie B.; Halter T. J.; Borah B. M.; Nancollas G. H. Tracking Amorphous Precursor Formation and Transformation during Induction Stages of Nucleation. Cryst. Growth Des. 2014, 14, 1659–1665. 10.1021/cg401777x. PubMed DOI PMC
Mancardi G.; Terranova U.; de Leeuw N. H. Calcium Phosphate Prenucleation Complexes in Water by Means of Ab Initio Molecular Dynamics Simulations. Cryst. Growth Des. 2016, 16, 3353–3358. 10.1021/acs.cgd.6b00327. DOI
Garcia N. A.; Malini R. I.; Freeman C. L.; Demichelis R.; Raiteri P.; Sommerdijk N. A. J. M.; Harding J. H.; Gale J. D. Simulation of Calcium Phosphate Prenucleation Clusters in Aqueous Solution: Association beyond Ion Pairing. Cryst. Growth Des. 2019, 19, 6422–6430. 10.1021/acs.cgd.9b00889. PubMed DOI PMC
Innocenti Malini R.; Freeman C. L.; Harding J. H. Interaction of Stable Aggregates Drives the Precipitation of Calcium Phosphate in Supersaturated Solutions. CrystEngComm 2019, 21, 6354–6364. 10.1039/c9ce00658c. DOI
Mancardi G.; Hernandez Tamargo C. E.; Di Tommaso D.; De Leeuw N. H. Detection of Posner’s Clusters during Calcium Phosphate Nucleation: A Molecular Dynamics Study. J. Mater. Chem. B 2017, 5, 7274–7284. 10.1039/c7tb01199g. PubMed DOI
Yang X.; Wang M.; Yang Y.; Cui B.; Xu Z.; Yang X. Physical Origin Underlying the Prenucleation-Cluster-Mediated Nonclassical Nucleation Pathways for Calcium Phosphate. Phys. Chem. Chem. Phys. 2019, 21, 14530–14540. 10.1039/c9cp00919a. PubMed DOI
da Silva L. C. E.; Más B. A. M.; Duek E. A. R.; Landers R.; Bertran C. A.; Gonçalves M. C. Amphiphilic Nucleating Agents to Enhance Calcium Phosphate Growth on Polymeric Surfaces. Langmuir 2017, 33, 3855.10.1021/acs.langmuir.6b04562. PubMed DOI
Surmenev R. A.; Surmeneva M. A.; Ivanova A. A. Significance of Calcium Phosphate Coatings for the Enhancement of New Bone Osteogenesis – A Review. Acta Biomater. 2014, 10, 557–579. 10.1016/J.ACTBIO.2013.10.036. PubMed DOI
Wei Q.; Wang Y.; Chai W.; Zhang Y.; Chen X. Molecular Dynamics Simulation and Experimental Study of the Bonding Properties of Polymer Binders in 3D Powder Printed Hydroxyapatite Bioceramic Bone Scaffolds. Ceram. Int. 2017, 43, 13702–13709. 10.1016/j.ceramint.2017.07.082. DOI
Karaman O.; Kumar A.; Moeinzadeh S.; He X.; Cui T.; Jabbari E. Effect of Surface Modification of Nanofibres with Glutamic Acid Peptide on Calcium Phosphate Nucleation and Osteogenic Differentiation of Marrow Stromal Cells. J. Tissue Eng. Regener. Med. 2016, 10, E132–E146. 10.1002/term.1775. PubMed DOI
Wu L. N. Y.; Genge B. R.; Wuthier R. E. Analysis and Molecular Modeling of the Formation, Structure, and Activity of the Phosphatidylserine-Calcium-Phosphate Complex Associated with Biomineralization. J. Biol. Chem. 2007, 283, 3827.10.1074/jbc.M707653200. PubMed DOI
Tang R.; Darragh M.; Orme C. A.; Guan X.; Hoyer J. R.; Nancollas G. H. Control of Biomineralization Dynamics by Interfacial Energies. Angew. Chem., Int. Ed. 2005, 44, 3698–3702. 10.1002/anie.200500153. PubMed DOI
Demichelis R.; Garcia N. A.; Raiteri P.; Innocenti Malini R.; Freeman C. L.; Harding J. H.; Gale J. D. Simulation of Calcium Phosphate Species in Aqueous Solution: Force Field Derivation. J. Phys. Chem. B 2018, 122, 1471–1483. 10.1021/acs.jpcb.7b10697. PubMed DOI
Tian T.; Liao J.; Zhou T.; Lin S.; Zhang T.; Shi S.-R.; Cai X.; Lin Y. Fabrication of Calcium Phosphate Microflowers and Their Extended Application in Bone Regeneration. ACS Appl. Mater. Interfaces 2017, 9, 30437–30447. 10.1021/acsami.7b09176. PubMed DOI
Duman E.; Şahin Kehribar E.; Ahan R. E.; Yuca E.; Şeker U. Ö. Ş. Biomineralization of Calcium Phosphate Crystals Controlled by Protein–Protein Interactions. ACS Biomater. Sci. Eng. 2019, 5, 4750.10.1021/acsbiomaterials.9b00649. PubMed DOI
Li M.; Wang L.; Putnis C. V. Energetic Basis for Inhibition of Calcium Phosphate Biomineralization by Osteopontin. J. Phys. Chem. B 2017, 121, 5968–5976. 10.1021/acs.jpcb.7b04163. PubMed DOI
Xue Z.; Yang M.; Xu D. Nucleation of Biomimetic Hydroxyapatite Nanoparticles on the Surface of Type I Collagen: Molecular Dynamics Investigations. J. Phys. Chem. C 2019, 123, 2533.10.1021/acs.jpcc.8b10342. DOI
Golda-Cepa M.; Kulig W.; Cwiklik L.; Kotarba A. Molecular Dynamics Insights into Water-Parylene C Interface: Relevance of Oxygen Plasma Treatment for Biocompatibility. ACS Appl. Mater. Interfaces 2017, 9, 16685–16693. 10.1021/acsami.7b03265. PubMed DOI
Tsai Y.-T.; Huang C.-W.; Liu H.-Y.; Huang M.-C.; Sun T.-P.; Chen W.-C.; Wu C.-Y.; Ding S.-T.; Chen H.-Y. Enhanced Bone Morphogenic Property of Parylene-C. Biomater. Sci. 2016, 4, 1754–1760. 10.1039/C6BM00664G. PubMed DOI
Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey R. W.; Klein M. L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. 10.1063/1.445869. DOI
Kohagen M.; Mason P. E.; Jungwirth P. Accounting for Electronic Polarization Effects in Aqueous Sodium Chloride via Molecular Dynamics Aided by Neutron Scattering. J. Phys. Chem. B 2016, 120, 1454–1460. 10.1021/acs.jpcb.5b05221. PubMed DOI
Martinek T.; Duboué-Dijon E.; Timr Š.; Mason P. E.; Baxová K.; Fischer H. E.; Schmidt B.; Pluhařová E.; Jungwirth P. Calcium Ions in Aqueous Solutions: Accurate Force Field Description Aided by Ab Initio Molecular Dynamics and Neutron Scattering. J. Chem. Phys. 2018, 148, 222813.10.1063/1.5006779. PubMed DOI
Kirby B. J.; Jungwirth P. Charge Scaling Manifesto: A Way of Reconciling the Inherently Macroscopic and Microscopic Natures of Molecular Simulations. J. Phys. Chem. Lett. 2019, 10, 7531–7536. 10.1021/acs.jpclett.9b02652. PubMed DOI
Kohagen M.; Mason P. E.; Jungwirth P. Accurate Description of Calcium Solvation in Concentrated Aqueous Solutions. J. Phys. Chem. B 2014, 118, 7902–7909. 10.1021/jp5005693. PubMed DOI
Pluhařová E.; Mason P. E.; Jungwirth P. Ion Pairing in Aqueous Lithium Salt Solutions with Monovalent and Divalent Counter-Anions. J. Phys. Chem. A 2013, 117, 11766–11773. 10.1021/jp402532e. PubMed DOI
Melcr J.; Martinez-Seara H.; Nencini R.; Kolafa J.; Jungwirth P.; Ollila O. H. S. Accurate Binding of Sodium and Calcium to a POPC Bilayer by Effective Inclusion of Electronic Polarization. J. Phys. Chem. B 2018, 122, 4546–4557. 10.1021/acs.jpcb.7b12510. PubMed DOI
Wang J.; Wolf R. M.; Caldwell J. W.; Kollman P. A.; Case D. A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25, 1157–1174. 10.1002/jcc.20035. PubMed DOI
Busenberg E.; Niel Plummer L. Thermodynamics of Magnesian Calcite Solid-Solutions at 25°C and 1 Atm Total Pressure. Geochim. Cosmochim. Acta 1989, 53, 1189–1208. 10.1016/0016-7037(89)90056-2. DOI
Antila H.; Buslaev P.; Favela-Rosales F.; Ferreira T. M.; Gushchin I.; Javanainen M.; Kav B.; Madsen J. J.; Melcr J.; Miettinen M. S.; Määttä J.; Nencini R.; Ollila O. H. S.; Piggot T. J. Headgroup Structure and Cation Binding in Phosphatidylserine Lipid Bilayers. J. Phys. Chem. B 2019, 123, 9066–9079. 10.1021/acs.jpcb.9b06091. PubMed DOI
Abraham M. J.; Murtola T.; Schulz R.; Páll S.; Smith J. C.; Hess B.; Lindahl E. Gromacs: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. 10.1016/j.softx.2015.06.001. DOI
Bussi G.; Donadio D.; Parrinello M. Canonical Sampling through Velocity Rescaling. J. Chem. Phys. 2007, 126, 014101.10.1063/1.2408420. PubMed DOI
Essmann U.; Perera L.; Berkowitz M. L.; Darden T.; Lee H.; Pedersen L. G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103, 8577–8593. 10.1063/1.470117. DOI
Hess B.; Bekker H.; Berendsen H. J. C.; Fraaije J. G. E. M. LINCS: A Linear Constraint Solver for Molecular Simulations. J. Comput. Chem. 1997, 18, 1463–1472. 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
Miyamoto S.; Kollman P. A. SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithm for Rigid Water Models. J. Comput. Chem. 1992, 13, 952–962. 10.1002/jcc.540130805. DOI
Golda M.; Brzychczy-Włoch M.; Faryna M.; Engvall K.; Kotarba A. Oxygen Plasma Functionalization of Parylene C Coating for Implants Surface: Nanotopography and Active Sites for Drug Anchoring. Mater. Sci. Eng., C 2013, 33, 4221–4227. 10.1016/j.msec.2013.06.014. PubMed DOI
Golda-Cepa M.; Aminlashgari N.; Hakkarainen M.; Engvall K.; Kotarba A. LDI-MS Examination of Oxygen Plasma Modified Polymer for Designing Tailored Implant Biointerfaces. RSC Adv. 2014, 4, 26240–26243. 10.1039/c4ra02656j. DOI
Rincón-López J.; Hermann-Muñoz J.; Giraldo-Betancur A.; De Vizcaya-Ruiz A.; Alvarado-Orozco J.; Muñoz-Saldaña J. Synthesis, Characterization and In Vitro Study of Synthetic and Bovine-Derived Hydroxyapatite Ceramics: A Comparison. Materials 2018, 11, 333.10.3390/ma11030333. PubMed DOI PMC
Ayers R.; Nielsen-Preiss S.; Ferguson V.; Gotolli G.; Moore J. J.; Kleebe H.-J. Osteoblast-like Cell Mineralization Induced by Multiphasic Calcium Phosphate Ceramic. Mater. Sci. Eng., C 2006, 26, 1333–1337. 10.1016/j.msec.2005.08.028. DOI
Mahamid J.; Sharir A.; Addadi L.; Weiner S. Amorphous Calcium Phosphate Is a Major Component of the Forming Fin Bones of Zebrafish: Indications for an Amorphous Precursor Phase. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 12748–12753. 10.1073/pnas.0803354105. PubMed DOI PMC
Wang L.; Nancollas G. H. Pathways to Biomineralization and Biodemineralization of Calcium Phosphates: The Thermodynamic and Kinetic Controls. Dalton Trans. 2009, 15, 2665–2672. 10.1039/b815887h. PubMed DOI
Cui W.; Li X.; Xie C.; Zhuang H.; Zhou S.; Weng J. Hydroxyapatite Nucleation and Growth Mechanism on Electrospun Fibers Functionalized with Different Chemical Groups and Their Combinations. Biomaterials 2010, 31, 4620–4629. 10.1016/j.biomaterials.2010.02.050. PubMed DOI