Use of IHF-QD Microscopic Analysis for the Detection of Food Allergenic Components: Peanuts and Wheat Protein

. 2020 Feb 23 ; 9 (2) : . [epub] 20200223

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32102221

Grantová podpora
IGA UVPS Brno 224/2018/FVHE University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1946/1, Brno, 612 42, Czech Republic

The aim of the study was to analytically evaluate quantum dots in immunohistofluorescence (IHF-QD) microscopic imaging as detectors of food allergens-peanut and wheat. The experiment was designed as two in silico experiments or simulations: (a) models of pastry samples were prepared with the addition of allergenic components (peanut and wheat protein components) and without the addition of allergenic components, and (b) positive and negative commercial samples underwent food allergen detection. The samples from both simulations were tested by the ELISA and IHF-QD microscopic methods. The primary antibodies (secondary antibodies to a rabbit Fc fragment with labeled CdSe/ZnS QD) were labelled at 525, 585, and 655 nm emissions. The use of quantum dots (QDs) has expanded to many science areas and they are also finding use in food allergen detection, as shown in the study. The study indicated that differences between the ELISA and IHF-QD microscopic methods were not observable among experimentally produced pastry samples with and without allergenic components, although differences were observed among commercial samples. The important value of the study is certainly the differences found in the application of different QD conjugates (525, 585, and 655). The highest contrast was found in the application of 585 QD conjugates that can serve for the possible quantification of present food allergens-peanuts and wheat. The study clearly emphasized that QD can be used for the qualitative detection of food allergens and can represent a reliable analytical method for food allergen detection in different food matrixes.

Zobrazit více v PubMed

Hattersley S., Ward R., Baka A., Crevel R.W. Advances in the risk management of unintended presence of allergenic foods in manufactured food products—An overview. Food Chem. Toxicol. 2014;67:255–261. doi: 10.1016/j.fct.2014.01.036. PubMed DOI

van Hengel A.J. Food allergen detection methods and the challenge to protect food-allergic consumers. Anal. Bioanal. Chem. 2007;389:111–118. doi: 10.1007/s00216-007-1353-5. PubMed DOI

Dzwolak W. Assessment of food allergen management in small food facilities. Food Control. 2017;73:323–331. doi: 10.1016/j.foodcont.2016.08.019. DOI

Ahsan N., Prasad Rao R.S., Gruppuso P.A., Ramratnam B., Salomon A.R. Targeted proteomics: Current status and future perspectives for quantification of food allergens. J. Proteom. 2016;143:15–23. doi: 10.1016/j.jprot.2016.04.018. PubMed DOI PMC

Keet C.A., Allen K.J. Advances in food allergy in 2017. J. Allergy Clin. Immunol. 2018;142:1719–1729. doi: 10.1016/j.jaci.2018.10.020. PubMed DOI

Taylor S.L., Nordlee J.A., Niemann L.M., Lambrecht D.M. Allergen immunoassays-considerations for use of naturally incurred standards. Anal. Bioanal. Chem. 2009;395:83–92. doi: 10.1007/s00216-009-2944-0. PubMed DOI

Dupuis R., Meisel Z., Grande D., Strupp E., Kounaves S., Graves A., Frasso R., Cannuscio C.C. Food allergy management among restaurant workers in large U. S. city. Food Control. 2016;63:147–157. doi: 10.1016/j.foodcont.2015.11.026. DOI

Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers, Amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and Repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004. [(accessed on 6 January 2020)]; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32011R1169&from=CS.

Monaci L., Visconti A. Immunochemical and DNA-based methods in food allergen analysis and quality assurance perspectives. Trends Food Sci. Technol. 2010;21:272–283. doi: 10.1016/j.tifs.2010.02.003. DOI

Poms R.E., Klein C.L., Anklam E. Methods for allergen analysis in food: A review. Food Addit. Contam. 2004;21:1–31. doi: 10.1080/02652030310001620423. PubMed DOI

EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) Scientific Opinion on the evaluation of allergenic foods and food ingredients for labelling purposes. EFSA J. 2014;12:3894.

Iqbal A., Shah F., Hamayun M., Ahmad A., Hussain A., Waqas M., Kang S.-M., Lee I.J. Allergens of Arachis hypogaea and the effect of processing on their detection by ELISA. Food Nutr. Res. 2016;60:28945. doi: 10.3402/fnr.v60.28945. PubMed DOI PMC

Pandey A.K., Varshney R.K., Sudini H.K., Pandey M.K. An improved enzyme-linked immunosorbent assay (ELISA) based protocol using seeds for detection of five major peanut allergens Ara h 1, Ara h 2, Ara h 3, Ara h 6 and Ara h 8. Front. Nutr. 2019;6:68. doi: 10.3389/fnut.2019.00068. PubMed DOI PMC

Miyazaki A., Watanabe S., Ogata K., Nagatomi Y., Kokutani R., Minegishi Y., Tamehiro N., Sakai S., Adachi R., Hirao T. Real-time PCR Detection Methods for Food Allergens (Wheat, Buckwheat, and Peanuts) Using Reference Plasmids. J. Agric. Food Chem. 2019;67:5680–5686. doi: 10.1021/acs.jafc.9b01234. PubMed DOI

Zhang M., Wu P., Wu J., Ping J., Wu J. Advanced DNA-based methods for the detection of peanut allergens in processed food. TrAC Trends Anal. Chem. 2019;114:278–292. doi: 10.1016/j.trac.2019.01.021. DOI

Holzhauser T., Röder M. Handbook of Food Allergen Detection and Control. Woodhead Publishing; Cambridge, UK: 2015. Polymerase chain reaction (PCR) methods for detecting allergens in foods; pp. 245–263.

Zhou J., Qi Q., Wang C., Qian Y., Liu G., Wang Y., Fu L. Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices. Biosens. Bioelectron. 2019;142:111449. doi: 10.1016/j.bios.2019.111449. PubMed DOI

Planque M., Arnould T., Dieu M., Delahaut P., Renard P., Gillard N. Advances in ultra-high performance liquid chromatography coupled to tandem mass spectrometry for sensitive detection of several food allergens in complex and processed foodstuffs. J. Chromatogr. A. 2016;1464:115–123. doi: 10.1016/j.chroma.2016.08.033. PubMed DOI

Monaci L., De Angelis E., Montemurro N., Pilolli R. Comprehensive overview and recent advances in proteomics MS based methods for food allergens analysis. TrAC Trends Anal. Chem. 2018;106:21–36. doi: 10.1016/j.trac.2018.06.016. DOI

Planque M., Arnould T., Delahaut P., Renard P., Dieu M., Gillard N. Development of a strategy for the quantification of food allergens in several food products by mass spectrometry in a routine laboratory. Food Chem. 2019;274:35–45. doi: 10.1016/j.foodchem.2018.08.095. PubMed DOI

Yang A., Zheng Y., Long C., Chen H., Liu B., Li X., Yuan J., Cheng F. Fluorescent immunosorbent assay for the detection of alpha lactalbumin in dairy products with monoclonal antibody bioconjugated with CdSe/ZnS quantum dots. Food Chem. 2014;150:73–79. doi: 10.1016/j.foodchem.2013.10.137. PubMed DOI

Stanisavljevic M., Krizkova S., Vaculovicova M., Krozek R., Adam V. Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application. Biosens. Bioelectron. 2015;74:562–574. doi: 10.1016/j.bios.2015.06.076. PubMed DOI

Goftman V.V., Aubert T., Ginste D.V., Van Deun R., Beloglazova N.V., Hens Z., De Saeger S., Goryacheva I.Y. Synthesis, modification, bioconjugation of silica coated fluorescent quantum dots and their application for mycotoxin detection. Biosens. Bioelectron. 2016;79:476–481. doi: 10.1016/j.bios.2015.12.079. PubMed DOI

Hlaváček A., Skládal P. The Application of Quantum Dots in Bioanalytical Chemistry. Chem. Listy. 2011;105:611–615.

Blanco-Canosa J.B., Wu M., Susumu K., Petryayeva E., Jennings T.L., Dawson P.E., Russ Algar W., Medintz I.L. Recent progress in the bioconjugation of quantum dots. Coord. Chem. Rev. 2014;263:101–137. doi: 10.1016/j.ccr.2013.08.030. DOI

Jamieson T., Bakhshi R., Petrova D., Pocock R., Imani M., Seifalian A.M. Biological applications of quantum dots. Biomaterials. 2007;28:4717–4732. doi: 10.1016/j.biomaterials.2007.07.014. PubMed DOI

Wang L., Cao L., Su G., Liu W., Xia C., Zhou H. Preparation and characterization of water-soluble ZnSe: Cu/ZnS core/shell quantum dots. Appl. Surf. Sci. 2013;280:673–678. doi: 10.1016/j.apsusc.2013.04.174. DOI

Torchynska T., Vorobiev Y. Advanced Biomedical Engineering. IntechOpen; London, UK: 2011. Semiconductor II-VI quantum dots with interface states and their biomedical applications. DOI

Chen J., Park B. Recent Advancements in Nanobioassays and Nanobiosensors for Foodborne Pathogenic Bacteria Detection. J. Food Prot. 2016;79:1055–1069. doi: 10.4315/0362-028X.JFP-15-516. PubMed DOI

Lee H.M., Kwon J., Choi J.S., Lee K.H., Yang S., Ko S.M., Chung J.K., Cho S.Y., Kim D. Rapid detection of norovirus from fresh lettuce using immunomagnetic separation and a quantum dots assay. J. Food Prot. 2013;76:707–711. doi: 10.4315/0362-028X.JFP-12-343. PubMed DOI

Bonilla J.C., Bozkurt F., Ansari S., Sozer N., Kokini J.L. Applications of quantum dots in food science and biology. Trends Food Sci. Technol. 2016;53:75–89. doi: 10.1016/j.tifs.2016.04.006. DOI

Bloch E., Massa L., Dill K. The use of quantum dots to amplify antigen detection. [(accessed on 9 January 2020)];arXiv. 2017 Available online: https://arxiv.org/ftp/arxiv/papers/1704/1704.08419.pdf.1704.08419

Sánchez-Pardo M.E., Ortiz-Moreno A., Mora-Escobedo R., Chanona-Pérez J.J., Necoechea-Mondragón H. Comparison of crumb microstructure from pound cakes baked in a microwave or conventional oven. LWT Food Sci. Technol. 2008;41:620–627. doi: 10.1016/j.lwt.2007.05.003. DOI

Hendl J. Review of Statistical Methods of Data Processing. 1st ed. Portál; Prague, Czech: 2004.

Byers R.J., Hitchman E.R. Quantum dots brighten biological imaging. Prog. Histochem. Cytochem. 2011;45:201–237. doi: 10.1016/j.proghi.2010.11.001. PubMed DOI

Zhang A., Liu N., Cao Y., Shi R., Wang J., Zhu Y., Yang P. Photoluminescence stability of colloidal CdTe quantum dots in various buffer solutions. J. Clust. Sci. 2013;24:427–437. doi: 10.1007/s10876-013-0566-3. DOI

Kulvietis V., Streckytė G., Rotomskis R. Spectroscopic investigations of CdTe quantum dot stability in different aqueous media. Lith. J. Phys. 2011;51:163–171. doi: 10.3952/lithjphys.51206. DOI

Wang T., Jiang X. Size-dependent stability of water-solubilized CdTe quantum dots and their uptake mechanism by live HeLa cells. ACS Appl. Mater. Interfaces. 2013;5:1190–1196. doi: 10.1021/am302234z. PubMed DOI

Durán G.M., Contento A.M., Ríos Á. β-Cyclodextrin coated CdSe/ZnS quantum dots for vanillin sensoring in food samples. Talanta. 2015;131:286–291. doi: 10.1016/j.talanta.2014.07.100. PubMed DOI

Duan H., Li Y., Shao Y., Huang X., Xiong Y. Multicolor quantum dot nanobeads for simultaneous multiplex immunochromatographic detection of mycotoxins in maize. Sens. Actuators B Chem. 2019;291:411–417. doi: 10.1016/j.snb.2019.04.101. DOI

Wang L., Wu C.S., Fan X., Mustapha A. Detection of Escherichia coli O157: H7 and Salmonella in ground beef by a bead-free quantum dot-facilitated isolation method. Int. J. Food Microbiol. 2012;156:83–87. doi: 10.1016/j.ijfoodmicro.2012.03.003. PubMed DOI

Mohamadi E., Moghaddasi M., Farahbakhsh A., Kazemi A. A quantum-dot-based fluoroassay for detection of food-borne pathogens. J. Photochem. Photobiol. B Biol. 2017;174:291–297. doi: 10.1016/j.jphotobiol.2017.08.005. PubMed DOI

Sozer N., Kokini J.L. Use of quantum nanodot crystals as imaging probes for cereal proteins. Food Res. Int. 2014;57:142–151. doi: 10.1016/j.foodres.2013.12.031. DOI

Ansari S., Bozkurt F., Yazar G., Ryan V., Bhunia A., Kokini J. Probing the distribution of gliadin proteins in dough and baked bread using conjugated quantum dots as a labeling tool. J. Cereal Sci. 2015;63:41–48. doi: 10.1016/j.jcs.2014.12.001. DOI

Bonilla J.C., Bernal-Crespo V., Schaber J.A., Bhunia A.K., Kokini J.L. Simultaneous immunofluorescent imaging of gliadins, low molecular weight glutenins, and high molecular weight glutenins in wheat flour dough with antibody-quantum dot complexes. Food Res. Int. 2019;120:776–783. doi: 10.1016/j.foodres.2018.11.038. PubMed DOI

Weng X., Neethirajan S. A microfluidic biosensor using graphene oxide and aptamer-functionalized quantum dots for peanut allergen detection. Biosens. Bioelectron. 2016;85:649–656. doi: 10.1016/j.bios.2016.05.072. PubMed DOI

Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January2002 Laying Down the General Principles and Requirements of Food Law, Establishing the European Food Safety Authorityand Laying Down Procedures in Matters of Food Safety. [(accessed on 6 January 2020)]; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32002R0178&from=CS.

Pele M., Brohée M., Anklam E., Hengel A.J.V. Peanut and hazelnut traces in cookies and chocolates: Relationship between analytical results and declaration of food allergens on product labels. Food Addit. Contam. 2007;24:1334–1344. doi: 10.1080/02652030701458113. PubMed DOI

Soon J.M. ‘No nuts please’: Food allergen management in takeaways. Food Control. 2018;91:349–356. doi: 10.1016/j.foodcont.2018.04.024. DOI

Sicherer S.H., Sampson H.A. Food allergy: A review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. J. Allergy Clin. Immunol. 2018;141:41–58. doi: 10.1016/j.jaci.2017.11.003. PubMed DOI

Collins S.C. Practice Paper of the Academy of Nutrition and Dietetics: Role of the registered dietitian nutritionist in the diagnosis and management of food allergies. J. Acad. Nutr. Diet. 2016;116:1621–1631. doi: 10.1016/j.jand.2016.07.018. PubMed DOI

Luyt D., Ball H., Kirk K., Stiefel G. Diagnosis and management of food allergy in children. Paediatr. Child Health. 2016;26:287–291. doi: 10.1016/j.paed.2016.02.005. DOI

Hosu O., Selvolini G., Marrazza G. Recent advances of immunosensors for detecting food allergens. Curr. Opin. Electrochem. 2018;10:149–156. doi: 10.1016/j.coelec.2018.05.022. DOI

Bartuzi Z., Kaczmarski M., Czerwionka-Szaflarska M., Małaczyńska T., Krogulska A. Position Paper of Food Allergy Section the Polish Society of Allergology on the diagnosis and management of food allergies. Alergol. Pol. Pol. J. Allergol. 2017;4:109–122. doi: 10.1016/j.alergo.2017.09.002. PubMed DOI PMC

Thyagarajan A., Burks A.W. Food allergy: Present and future management. World Allergy Organ. J. 2009;2:282. doi: 10.1097/WOX.0b013e3181c81fed. PubMed DOI PMC

Grimshaw K.E., Bryant T., Oliver E.M., Akhtar R.S., Latham C.B., Siniscalco D., Fuccio C., Roth K.A.I. Incidence and risk factors for food hypersensitivity in UK infants: Results from a birth cohort study. Clin. Transl. Allergy. 2016;6:1. doi: 10.1186/s13601-016-0089-8. PubMed DOI PMC

Burney P.G.J., Potts J., Kummeling I., Mills E.N.C., Clausen M., Dubakiene R., Barreales L., Fernandez-Perez C., Fernandez-Rivas M., Le T.M., et al. The prevalence and distribution of food sensitization in European adults. Allergy. 2013;69:365–371. doi: 10.1111/all.12341. PubMed DOI

Burney P., Summers C., Chinn S., Hooper R., van Ree R., Lidholm J. Prevalence and distribution of sensitization to foods in the European Community Respiratory Health Survey: A EuroPrevall analysis. Allergy. 2010;65:1182–1188. doi: 10.1111/j.1398-9995.2010.02346.x. PubMed DOI

Allen K.J., Taylor S.L. The consequences of precautionary allergen labeling: Safe haven or unjustifiable burden? J. Allergy Clin. Immunol. 2018;6:400–407. doi: 10.1016/j.jaip.2017.12.025. PubMed DOI

Akhtar R.S., Latham C.B., Siniscalco D., Fuccio C., Roth K.A. Quantum Dots. Volume 374. Humana Press; Totowa, NJ, USA: 2007. Immunohistochemical detection with quantum dots. Methods in Molecular Biology; pp. 11–28. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...