Carbon-Based Band Gap Engineering in the h-BN Analytical Modeling

. 2020 Feb 25 ; 13 (5) : . [epub] 20200225

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32106402

The absence of a band gap in graphene is a hindrance to its application in electronic devices. Alternately, the complete replacement of carbon atoms with B and N atoms in graphene structures led to the formation of hexagonal boron nitride (h-BN) and caused the opening of its gap. Now, an exciting possibility is a partial substitution of C atoms with B and N atoms in the graphene structure, which caused the formation of a boron nitride composite with specified stoichiometry. BC2N nanotubes are more stable than other triple compounds due to the existence of a maximum number of B-N and C-C bonds. This paper focused on the nearest neighbor's tight-binding method to explore the dispersion relation of BC2N, which has no chemical bond between its carbon atoms. More specifically, the band dispersion of this specific structure and the effects of energy hopping in boron-carbon and nitrogen-carbon atoms on the band gap are studied. Besides, the band structure is achieved from density functional theory (DFT) using the generalized gradient approximations (GGA) approximation method. This calculation shows that this specific structure is semimetal, and the band gap energy is 0.167 ev.

Zobrazit více v PubMed

Shao Y., Wang Q., Hu L., Pan H., Shi X. BC2N monolayers as promising anchoring materials for lithium-sulfur batteries: First-principles insights. Carbon. 2019;149:530–537. doi: 10.1016/j.carbon.2019.04.077. DOI

Matsuda Y., Morita M., Hanada T., Kawaguchi M. A new negative electrode matrix, BC2N, for rechargeable lithium batteries. J. Power Sources. 1993;43:75–80. doi: 10.1016/0378-7753(93)80103-V. DOI

Keyes R.W. Physical limits of silicon transistors and circuits. Rep. Prog. Phys. 2005;68:2701–2746. doi: 10.1088/0034-4885/68/12/R01. DOI

Goodman J.R. Using cache memory to reduce processor-memory traffic. ACM SIGARCH Comput. Archit. News. 1983;11:124–131. doi: 10.1145/1067651.801647. DOI

Chircu A.M., Kauffman R.J. Limits to value in electronic commerce-related IT investments. J. Manag. Inf. Syst. 2000;17:59–80. doi: 10.1080/07421222.2000.11045645. DOI

Goser K.F., Pacha C., Kanstein A., Rossmann M.L. Aspects of systems and circuits for nanoelectronics. Proc. IEEE. 1997;85:558–573. doi: 10.1109/5.573741. DOI

Tarafdar J.C., Raliya R. Nanotechnology. Scientific Publishers; Jodhpur, India: 2012.

Brazhkin V., Lyapin A. Hard and superhard carbon phases synthesised from fullerites under pressure. Сверхтвердые материалы. 2012;6:75–105.

Welser J., Wolf S.A., Avouris P., Theis T. Nanotechnology Research Directions for Societal Needs in 2020. Springer; Dordrecht, The Netherlands: 2011. Applications: Nanoelectronics and nanomagnetics; pp. 375–415.

Koloor S.S.R., Rahimian-Koloor S.M., Karimzadeh A., Hamdi M., Petrů M., Tamin M.N. Nano-level damage characterization of graphene/polymer cohesive interface under tensile separation. Polymers. 2019;11:1435. doi: 10.3390/polym11091435. PubMed DOI PMC

Rahimian-Koloor S.M., Moshrefzadeh-Sani H., Hashemianzadeh S.M., Shokrieh M.M. The effective stiffness of an embedded graphene in a polymeric matrix. Curr. Appl. Phys. 2018;18:559–566. doi: 10.1016/j.cap.2018.02.007. DOI

Geim A.K., Novoselov K.S. Nanoscience and Technology: A Collection of Reviews from Nature Journals. World Scientific; London, UK: 2010. The rise of graphene; pp. 11–19.

Bertolazzi S., Bondavalli P., Roche S., San T., Choi S.Y., Colombo L., Bonaccorso F., Samorì P. Nonvolatile Memories Based on Graphene and Related 2D Materials. Adv. Mater. 2019;31:1806663. doi: 10.1002/adma.201806663. PubMed DOI

Tang C., Bando Y., Sato T., Kurashima K. A novel precursor for synthesis of pure boron nitride nanotubes. Chem. Commun. 2002;12:1290–1291. doi: 10.1039/b202177c. PubMed DOI

Chimene D., Alge D.L., Gaharwar A.K. Two-dimensional nanomaterials for biomedical applications: Emerging trends and future prospects. Adv. Mater. 2015;27:7261–7284. doi: 10.1002/adma.201502422. PubMed DOI

Xu M., Liang T., Shi M., Chen H. Graphene-like two-dimensional materials. Chem. Rev. 2013;113:3766–3798. doi: 10.1021/cr300263a. PubMed DOI

Pierret R.F. Semiconductor Device Fundamentals. Pearson Education India; Noida, India: 1996.

Yoder M.N. Wide bandgap semiconductor materials and devices. IEEE Trans. Electron Devices. 1996;43:1633–1636. doi: 10.1109/16.536807. DOI

Rani P., Jindal V. Designing band gap of graphene by B and N dopant atoms. RSC Adv. 2013;3:802–812. doi: 10.1039/C2RA22664B. DOI

Mazzoni M.S., Nunes R., Azevedo S., Chacham H. Electronic structure and energetics of BxCyNz layered structures. Phys. Rev. B. 2006;73:073108. doi: 10.1103/PhysRevB.73.073108. DOI

Golberg D., Bando Y., Tang C., Zhi C. Boron nitride nanotubes. Adv. Mater. 2007;19:2413–2432. doi: 10.1002/adma.200700179. DOI

Kawaguchi M. B/C/N materials based on the graphite network. Adv. Mater. 1997;9:615–625. doi: 10.1002/adma.19970090805. DOI

Ci L., Song L., Jin C., Jariwala D., Wu D., Li Y., Srivastava A., Wang Z., Storr K., Balicas L. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 2010;9:430. doi: 10.1038/nmat2711. PubMed DOI

Park C., Chadi D. Stability of deep donor and acceptor centers in GaN, AlN, and BN. Phys. Rev. B. 1997;55:12995. doi: 10.1103/PhysRevB.55.12995. DOI

Liu A.Y., Wentzcovitch R.M., Cohen M.L. Atomic arrangement and electronic structure of BC2N. Phys. Rev. B. 1989;39:1760. doi: 10.1103/PhysRevB.39.1760. PubMed DOI

Terrones M., Botello-Méndez A.R., Campos-Delgado J., López-Urías F., Vega-Cantú Y.I., Rodríguez-Macías F.J., Elías A.L., Munoz-Sandoval E., Cano-Márquez A.G., Charlier J.-C. Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today. 2010;5:351–372. doi: 10.1016/j.nantod.2010.06.010. DOI

Yao B., Chen W., Liu L., Ding B., Su W. Amorphous B–C–N semiconductor. J. Appl. Phys. 1998;84:1412–1415. doi: 10.1063/1.368175. DOI

Tang Q., Zhou Z. Graphene-analogous low-dimensional materials. Prog. Mater. Sci. 2013;58:1244–1315. doi: 10.1016/j.pmatsci.2013.04.003. DOI

Tran V.T., Saint-Martin J., Dollfus P., Volz S. Third nearest neighbor parameterized tight binding model for graphene nano-ribbons. AIP Adv. 2017;7:075212. doi: 10.1063/1.4994771. DOI

Simão C.D., Reparaz J.S., Wagner M.R., Graczykowski B., Kreuzer M., Ruiz-Blanco Y.B., García Y., Malho J.-M., Goñi A.R., Ahopelto J., et al. Optical and mechanical properties of nanofibrillated cellulose: Toward a robust platform for next-generation green technologies. Carbohydr. Polym. 2015;126:40. doi: 10.1016/j.carbpol.2015.03.032. PubMed DOI

Bena C., Montambaux G. Remarks on the tight-binding model of graphene. New J. Phys. 2009;11:095003. doi: 10.1088/1367-2630/11/9/095003. DOI

Papaconstantopoulos D.A., Mehl M.J. The Slater–Koster tight-binding method: A computationally efficient and accurate approach. J. Phys. Condens. Matter. 2003;15:R413. doi: 10.1088/0953-8984/15/10/201. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...