Carbon-Based Band Gap Engineering in the h-BN Analytical Modeling
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32106402
PubMed Central
PMC7084880
DOI
10.3390/ma13051026
PII: ma13051026
Knihovny.cz E-zdroje
- Klíčová slova
- BC2N band energy, BC2N band gap engineering, hoping energy, tight binding,
- Publikační typ
- časopisecké články MeSH
The absence of a band gap in graphene is a hindrance to its application in electronic devices. Alternately, the complete replacement of carbon atoms with B and N atoms in graphene structures led to the formation of hexagonal boron nitride (h-BN) and caused the opening of its gap. Now, an exciting possibility is a partial substitution of C atoms with B and N atoms in the graphene structure, which caused the formation of a boron nitride composite with specified stoichiometry. BC2N nanotubes are more stable than other triple compounds due to the existence of a maximum number of B-N and C-C bonds. This paper focused on the nearest neighbor's tight-binding method to explore the dispersion relation of BC2N, which has no chemical bond between its carbon atoms. More specifically, the band dispersion of this specific structure and the effects of energy hopping in boron-carbon and nitrogen-carbon atoms on the band gap are studied. Besides, the band structure is achieved from density functional theory (DFT) using the generalized gradient approximations (GGA) approximation method. This calculation shows that this specific structure is semimetal, and the band gap energy is 0.167 ev.
Zobrazit více v PubMed
Shao Y., Wang Q., Hu L., Pan H., Shi X. BC2N monolayers as promising anchoring materials for lithium-sulfur batteries: First-principles insights. Carbon. 2019;149:530–537. doi: 10.1016/j.carbon.2019.04.077. DOI
Matsuda Y., Morita M., Hanada T., Kawaguchi M. A new negative electrode matrix, BC2N, for rechargeable lithium batteries. J. Power Sources. 1993;43:75–80. doi: 10.1016/0378-7753(93)80103-V. DOI
Keyes R.W. Physical limits of silicon transistors and circuits. Rep. Prog. Phys. 2005;68:2701–2746. doi: 10.1088/0034-4885/68/12/R01. DOI
Goodman J.R. Using cache memory to reduce processor-memory traffic. ACM SIGARCH Comput. Archit. News. 1983;11:124–131. doi: 10.1145/1067651.801647. DOI
Chircu A.M., Kauffman R.J. Limits to value in electronic commerce-related IT investments. J. Manag. Inf. Syst. 2000;17:59–80. doi: 10.1080/07421222.2000.11045645. DOI
Goser K.F., Pacha C., Kanstein A., Rossmann M.L. Aspects of systems and circuits for nanoelectronics. Proc. IEEE. 1997;85:558–573. doi: 10.1109/5.573741. DOI
Tarafdar J.C., Raliya R. Nanotechnology. Scientific Publishers; Jodhpur, India: 2012.
Brazhkin V., Lyapin A. Hard and superhard carbon phases synthesised from fullerites under pressure. Сверхтвердые материалы. 2012;6:75–105.
Welser J., Wolf S.A., Avouris P., Theis T. Nanotechnology Research Directions for Societal Needs in 2020. Springer; Dordrecht, The Netherlands: 2011. Applications: Nanoelectronics and nanomagnetics; pp. 375–415.
Koloor S.S.R., Rahimian-Koloor S.M., Karimzadeh A., Hamdi M., Petrů M., Tamin M.N. Nano-level damage characterization of graphene/polymer cohesive interface under tensile separation. Polymers. 2019;11:1435. doi: 10.3390/polym11091435. PubMed DOI PMC
Rahimian-Koloor S.M., Moshrefzadeh-Sani H., Hashemianzadeh S.M., Shokrieh M.M. The effective stiffness of an embedded graphene in a polymeric matrix. Curr. Appl. Phys. 2018;18:559–566. doi: 10.1016/j.cap.2018.02.007. DOI
Geim A.K., Novoselov K.S. Nanoscience and Technology: A Collection of Reviews from Nature Journals. World Scientific; London, UK: 2010. The rise of graphene; pp. 11–19.
Bertolazzi S., Bondavalli P., Roche S., San T., Choi S.Y., Colombo L., Bonaccorso F., Samorì P. Nonvolatile Memories Based on Graphene and Related 2D Materials. Adv. Mater. 2019;31:1806663. doi: 10.1002/adma.201806663. PubMed DOI
Tang C., Bando Y., Sato T., Kurashima K. A novel precursor for synthesis of pure boron nitride nanotubes. Chem. Commun. 2002;12:1290–1291. doi: 10.1039/b202177c. PubMed DOI
Chimene D., Alge D.L., Gaharwar A.K. Two-dimensional nanomaterials for biomedical applications: Emerging trends and future prospects. Adv. Mater. 2015;27:7261–7284. doi: 10.1002/adma.201502422. PubMed DOI
Xu M., Liang T., Shi M., Chen H. Graphene-like two-dimensional materials. Chem. Rev. 2013;113:3766–3798. doi: 10.1021/cr300263a. PubMed DOI
Pierret R.F. Semiconductor Device Fundamentals. Pearson Education India; Noida, India: 1996.
Yoder M.N. Wide bandgap semiconductor materials and devices. IEEE Trans. Electron Devices. 1996;43:1633–1636. doi: 10.1109/16.536807. DOI
Rani P., Jindal V. Designing band gap of graphene by B and N dopant atoms. RSC Adv. 2013;3:802–812. doi: 10.1039/C2RA22664B. DOI
Mazzoni M.S., Nunes R., Azevedo S., Chacham H. Electronic structure and energetics of BxCyNz layered structures. Phys. Rev. B. 2006;73:073108. doi: 10.1103/PhysRevB.73.073108. DOI
Golberg D., Bando Y., Tang C., Zhi C. Boron nitride nanotubes. Adv. Mater. 2007;19:2413–2432. doi: 10.1002/adma.200700179. DOI
Kawaguchi M. B/C/N materials based on the graphite network. Adv. Mater. 1997;9:615–625. doi: 10.1002/adma.19970090805. DOI
Ci L., Song L., Jin C., Jariwala D., Wu D., Li Y., Srivastava A., Wang Z., Storr K., Balicas L. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 2010;9:430. doi: 10.1038/nmat2711. PubMed DOI
Park C., Chadi D. Stability of deep donor and acceptor centers in GaN, AlN, and BN. Phys. Rev. B. 1997;55:12995. doi: 10.1103/PhysRevB.55.12995. DOI
Liu A.Y., Wentzcovitch R.M., Cohen M.L. Atomic arrangement and electronic structure of BC2N. Phys. Rev. B. 1989;39:1760. doi: 10.1103/PhysRevB.39.1760. PubMed DOI
Terrones M., Botello-Méndez A.R., Campos-Delgado J., López-Urías F., Vega-Cantú Y.I., Rodríguez-Macías F.J., Elías A.L., Munoz-Sandoval E., Cano-Márquez A.G., Charlier J.-C. Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today. 2010;5:351–372. doi: 10.1016/j.nantod.2010.06.010. DOI
Yao B., Chen W., Liu L., Ding B., Su W. Amorphous B–C–N semiconductor. J. Appl. Phys. 1998;84:1412–1415. doi: 10.1063/1.368175. DOI
Tang Q., Zhou Z. Graphene-analogous low-dimensional materials. Prog. Mater. Sci. 2013;58:1244–1315. doi: 10.1016/j.pmatsci.2013.04.003. DOI
Tran V.T., Saint-Martin J., Dollfus P., Volz S. Third nearest neighbor parameterized tight binding model for graphene nano-ribbons. AIP Adv. 2017;7:075212. doi: 10.1063/1.4994771. DOI
Simão C.D., Reparaz J.S., Wagner M.R., Graczykowski B., Kreuzer M., Ruiz-Blanco Y.B., García Y., Malho J.-M., Goñi A.R., Ahopelto J., et al. Optical and mechanical properties of nanofibrillated cellulose: Toward a robust platform for next-generation green technologies. Carbohydr. Polym. 2015;126:40. doi: 10.1016/j.carbpol.2015.03.032. PubMed DOI
Bena C., Montambaux G. Remarks on the tight-binding model of graphene. New J. Phys. 2009;11:095003. doi: 10.1088/1367-2630/11/9/095003. DOI
Papaconstantopoulos D.A., Mehl M.J. The Slater–Koster tight-binding method: A computationally efficient and accurate approach. J. Phys. Condens. Matter. 2003;15:R413. doi: 10.1088/0953-8984/15/10/201. DOI