Case Studies on The Use of LiveLink for MATLAB for Evaluation and Optimization of The Heat Sources in Experimental Borehole

. 2020 Feb 27 ; 20 (5) : . [epub] 20200227

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32120959

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000867 European Regional Development Fund
SP2020/42 VSB-TU Ostrava

In the Czech part of the Upper Silesian Coal Basin (Moravian-Silesian region, Czech Republic), there are many deposits of endogenous combustion (e.g., localized burning soil bodies, landfills containing industrial waste, or slag rocks caused by mining processes). The Hedwig mining dump represents such an example of these sites where, besides the temperature and the concentrations of toxic gases, electric and non-electric quantities are also monitored within the frame of experimentally proposed and patented technology for heat collection (the so-called "Pershing" system). Based on these quantities, this paper deals with the determination and evaluation of negative heat sources and the optimization of the positive heat source dependent on measured temperatures within evaluation points or on a thermal profile. The optimization problem is defined based on a balance of the heat sources in the steady state while searching for a local minimum of the objective function for the heat source. From an implementation point of view, it is the interconnection of the numerical model of the heat collector in COMSOL with a user optimization algorithm in MATLAB using the LiveLink for MATLAB. The results are elaborated in five case studies based on the susceptibility testing of the numerical model by input data from the evaluation points. The tests were focused on the model behavior in terms of preprocessing for measurement data from each chamber of the heat collector and for the estimated value of temperature differences at 90% and 110% of the nominal value. It turned out that the numerical model is more sensitive to the estimates in comparison with the measured data of the chambers, and this finding does not depend on the type optimization algorithm. The validation of the model by the use of the mean-square error led to the finding of optimal value, also valid with respect to the other evaluation.

Zobrazit více v PubMed

Hajovsky R., Filipova B., Pies M., Ozana S. Using Matlab for thermal processes modeling and prediction at mining dumps; Proceedings of the International Conference on Control, Automation and Systems 2012; JeJu Island, Korea. 17–21 October 2012; pp. 584–587.

Klika Z., Kraussová J. Properties of altered coals associated with carboniferous red beds in the upper silesian coal basin and their tentative classification. Int. J. Coal Geol. 1993;22:217–235. doi: 10.1016/0166-5162(93)90027-8. DOI

Klika Z. Geochemistry of Coal from Region of the Red Beds Bodies of the Upper Silesian Coal Basin. VŠB—Technical University of Ostrava; Ostrava, Czech Republic: 1998.

Pryor R.W. Multiphysics Modeling using COMSOL: A First Principles Approach. Jones and Bartlett Publishers; Sudbury, MA, USA: 2011.

Price M., Walsh K. H Rocks & Minerals (Pocket Nature) Dorling Kindersley; London, UK: 2005.

Výpis z databáze patentů a Užitných Vzorů. [(accessed on 5 January 2020)]; Available online: Isdv.upv.cz/portal/pls/portlets.pts.det?xprim=2079157&lan=cs&s_majs=&s_puvo=štěpánožana&s_naze=&s=anot.

Wessling S., Kuenzer C., Kessels W., Wuttke M.W. Numerical modeling for analyzing thermal surface anomalies induced by underground coal fires. Int. J. Coal Geol. 2008;74:175–184. doi: 10.1016/j.coal.2007.12.005. DOI

Rohsenow W.M., Hartnett J.P., Cho Y.I. Handbook of Heat Transfer. 3rd ed. McGraw-Hill; New York, NY, USA: 1998.

Hower J.C., O’Keefe J.M.K., Henke K.P., Wagner N.J., Copley G., Blake D.R., Garrison T., Oliveira M.L.S., Kautzmann R.M., Silva L.F.O. Gaseous emissions and sublimates from the Truman Shepherd coal fire, Floyd County, Kentucky: A re-investigation following attempted mitigation of the fire. Int. J. Coal Geol. 2013;116–117:63–74. doi: 10.1016/j.coal.2013.06.007. DOI

Kresta F. Enhancement of Quality of Environment with Respect to Occurrence of Endogenous Fires in Mine Dumps and Industrial Waste Dumps, Including its Modeling and Spread Prediction. ARCADIS Geotechnika; Ostrava, Czech Republic: 2013. [(accessed on 19 February 2020)]. Available online: http://enviro.vsb.cz/Arcadis_Final_Report_2013.pdf.

Nie X., Wei X., Li X., Lu C. Heat treatment and ventilation optimization in a deep mine. Adv. Civ. Eng. 2018 doi: 10.1155/2018/1529490. DOI

Lai J., Qiu J., Fan H., Chen J., Xie Y. Freeze-proof method and test verification of a cold region tunnel employing electric heat tracing. Tunn. Undergr. Space Technol. 2016;60:56–65. doi: 10.1016/j.tust.2016.08.002. DOI

Ozana S., Pies M., Hajovsky R. Using MATLAB and COMSOL multiphysics for optimization of the model of underground thermal processes at old mining dumps. Appl. Mech. Mater. 2014;548–549:571–578. doi: 10.4028/www.scientific.net/AMM.548-549.571. DOI

Hajovsky R., Pies M. Experience in collecting heat at the Hedvika and Krimich thermally active mining dumps. IFAC Pap. 2016;49:546–551. doi: 10.1016/j.ifacol.2016.12.092. DOI

Hajovsky R., Hajovsky J., Pies M. Thermall processes at old mining dumps and their measurement and utilization. Lect. Notes Eng. Comput. Sci. 2013;1:289–293.

Huang J., Bruining J., Wolf K.H.A.A. Modeling of gas flow and temperature fields in underground coal fires. Fire Saf. J. 2001;36:477–489. doi: 10.1016/S0379-7112(01)00003-0. DOI

Klika Z., Kozubek T., Martinec P., Kliková C., Dostál Z. Mathematical modeling of bituminous coal seams burning contemporaneously with the formation of a variegated beds body. Int. J. Coal Geol. 2004;59:37–151. doi: 10.1016/j.coal.2003.12.010. DOI

Zhang J., Kuenzer C. Thermal surface characteristics of coal fires 1: Results of in-situ measurements. J. Appl. Geophys. 2007;63:117–134. doi: 10.1016/j.jappgeo.2007.08.002. DOI

Polyanin A.D. Handbook of Linear Partial Equations for Engineers and Scientists. Chapman and Hall/CRC; Boca Baton, FL, USA: 2002.

Pies M., Ozana S., Hajovsky R., Vojcinak P. Measurement and simulation of underground heat collecting processes with COMSOL multiphysics. Lect. Notes Eng. Comput. Sci. 2013;2:1026–1029.

Hajovsky R., Pies M., Ozana S., Hajovsky J. Heat energy collection from thermally active mining dump Hedvika; Proceedings of the IEEE International Conference on Automation Science and Engineering; Taipei, Taiwan. 18–22 August 2014; Aug 18–22, pp. 44–49. DOI

Klika Z. Burning Coal Dumps II: Calculation of Heat Balances at the Hedwig Mining Dump. VŠB–Technical University of Ostrava; Ostrava, Czech Republic: 2011.

Ribeiro J., da Silva F.E., Floresa D. Burning of coal waste piles from duoro coalfield (Portugal): Petrological, geochemical and mineralogical characterization. Int. J. Coal Geol. 2010;81:359–372. doi: 10.1016/j.coal.2009.10.005. DOI

COMSOL . LiveLink™ for MATLAB®: User’s Guide. COMSOL AB; New York, NY, USA: 2009–2011.

Houlding S.L. 3D Geoscience Modeling: Computer Techniques for Geological Characterization. Springer; Berlin, Germany: 1994.

Demek J., Mackovčin P., Balatka B., editors. Geographical Lexicon of the Czech Republic: Mountains and Lowlands. 2nd ed. AOPK ČR; Brno, Czech Republic: 2006.

Brázdil R., Kirchner K. Selected Natural Extremes and their Impacts in Moravia and Silesia. Masaryk University, Czech Hydrometeorological Institute, Institute of Geonis; Brno, Czech Republic: 2007.

Geoportál. [(accessed on 7 January 2020)]; Available online: http://geoportal.gov.cz/web/guest/map.

Bujok P., Grycz D., Klempa M., Kunz A., Porzer M., Pytlík A., Rozehnal Z., Vojčinák P. Assessment of the influence of shortening the duration of TRT (Thermal Response Test) on the precision of measured values. Energy. 2014;64:120–129. doi: 10.1016/j.energy.2013.11.079. DOI

Incropera F.P., DeWitt D.P. Introduction to Heat Transfer. 4th ed. John Wiley & Sons; New York, NY, USA: 2002.

Querol X., Izquierdo M., Monfort E., Alvarez E., Font O., Moreno T., Alastuey A., Zhuang X., Lu W., Wang Y. Environmental characterization of burnt coal gangue banks at Yangquan, Shanxi Province, China. Int. J. Coal Geol. 2008;75:93–104. doi: 10.1016/j.coal.2008.04.003. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...