Improvements on Live Feed Enrichments for Pikeperch (Sander lucioperca) Larval Culture
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32121317
PubMed Central
PMC7143274
DOI
10.3390/ani10030401
PII: ani10030401
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
This study focused on supplementing pikeperch (Sander lucioperca) larvae with rotifers fed with Chlorella vulgaris during the first 15 days post hatching (dph). Larvae were fed a combination of rotifers and artemia under three different enrichments: A) Nannochloropsis occulata, B) Chlorella vulgaris, and C) a commercial enrichment-Selco, Spresso from INVE. After 17 days from the trial initiation differences were found between treatments on survival rate, myomere height (MH), fatty acid composition, and stress tolerance. In terms of survival, larvae from treatment b (74.5%) and c (66%) excelled over the control (a) treatment (59%). Furthermore, larvae from both the Chlorella (b) and the Selco (c) treatments showed more resilience to stress conditions (10% and 37% reduction in mortality) when exposed to high salinity conditions (18ppt) for 3 h (stress response). Overall, larvae from treatments b and c performed better than those receiving a non-enriched diet (a), likely due to the higher levels of Essential Fatty Acids (EFA) and the ability of pikeperch to desaturate and elongate fatty acids (FA) with 18 carbons to LC PUFAs (Polyunsaturated Fatty Acids). The present study provides valuable input for designing improved feeding protocols, which will increase the efficiency of pikeperch larval culture.
Zobrazit více v PubMed
Policar T., Schaefer F.J., Panana E., Meyer S., Teerlinck S., Toner D., Żarski D. Recent progress in European percid fish culture production technology—Tackling bottlenecks. Aquac. Int. 2019;27:1151–1174. doi: 10.1007/s10499-019-00433-y. DOI
FAO . The State of Food and Agriculture. FAO; Rome, Italy: 2013.
Kestemont P., Dabrowski K., Summerfelt R.C. Biology and Culture of Percid Fishes: Principles and Practices. 1st ed. Springer; Dordrecht, The Netherlands: 2015.
Policar T., Stejskal V., Kristan J., Podhorec P., Svinger V., Blaha M. The effect of fish size and stocking density on the weaning success of pond-cultured pikeperch Sander lucioperca L. juveniles. Aquac. Int. 2013;21:869–882. doi: 10.1007/s10499-012-9563-z. DOI
Dalsgaard J., Lund I., Thorarinsdottir R., Drengstig A., Arvonen K. Farming different species in RAS in Nordic countries: Current status and future perspectives. Aquac. Eng. 2013;53:2–13. doi: 10.1016/j.aquaeng.2012.11.008. DOI
Blecha M., Samarin A.M., Křišťan J., Policar T. Benefits of hormone treatment of both sexes in semi-artificial reproduction of pikeperch (Sander lucioperca L.) Czech J. Anim. Sci. 2016;61:2016–2203. doi: 10.17221/60/2015-CJAS. DOI
Schäfer F.J. Reproductive Management and Gamete Quality in Pikeperch (Sander lucioperca) Humboldt-Universität zu Berlin; Berlin, Germany: 2016.
Kestemont P., Xueliang X., Hamza N., Maboudou J., Toko I.I. Effect of weaning age and diet on pikeperch larviculture. Aquaculture. 2007;264:197–204. doi: 10.1016/j.aquaculture.2006.12.034. DOI
Nyina-wamwiza L., Xu X.L., Blanchard G., Kestemont P. Effect of dietary protein, lipid and carbohydrate ratio on growth, feed efficiency and body composition of pikeperch Sander lucioperca fingerlings. Aquac. Res. 2005;36:486–492. doi: 10.1111/j.1365-2109.2005.01233.x. DOI
Schulz C., Böhm M., Wirth M., Rennert B. Effect of dietary protein on growth, feed conversion, body composition and survival of pike perch fingerlings (Sander lucioperca) Aquac. Nutr. 2007;13:373–380. doi: 10.1111/j.1365-2095.2007.00487.x. DOI
FAO . Fisheries and Aquaculture Statistics. FAO; Rome, Italy: 2016.
Steffens W., Geldhauser F., Gerstner P., Hilge V. German experiences in the propagation and rearing of fingerling pikeperch (Stizostedion lucioperca) Ann. Zool. Fennici. 1996;33:627–634.
Nash C.E., Kuo C.-M. Hypotheses for problems impeding the mass propagation of grey mullet and other finfish. Aquaculture. 1975;5:119–133. doi: 10.1016/0044-8486(75)90093-9. DOI
Howell B.R. A re-appraisal of the potential of the sole, Solea solea (L.), for commercial cultivation. Aquaculture. 1997;155:355–365. doi: 10.1016/S0044-8486(97)00103-8. DOI
Fuchs J. Influence de la photoperiode sur la croissance et la survie de la larve et du juvenile de sole (Solea solea) en elevage. Aquaculture. 1978;15:63–74. doi: 10.1016/0044-8486(78)90072-8. DOI
Person-LêRuyet J., Verillaud P. Techniques d’elevage intensif de la daurade doree (Sparus aurata (L.)) de la naissance a l’age de deux mois. Aquaculture. 1980;20:351–370. doi: 10.1016/0044-8486(80)90096-4. DOI
Tandler A., Helps S. The effects of photoperiod and water exchange rate on growth and survival of gilthead sea bream (Sparus aurata, Linnaeus; Sparidae) from hatching to metamorphosis in mass rearing systems. Aquaculture. 1985;48:71–82. doi: 10.1016/0044-8486(85)90053-5. DOI
Girin M. Marine fish culture in France: Recent developments. Aquaculture. 1975;5:113. doi: 10.1016/0044-8486(75)90036-8. DOI
Lubzens E., Tandler A., Minkoff G. Rotifers as food in aquaculture. Hydrobiologia. 1989;186–187:387–400. doi: 10.1007/BF00048937. DOI
Yanes-Roca C., Mráz J., Born-Torrijos A., Holzer A.S., Imentai A., Policar T. Introduction of rotifers (Brachionus plicatilis) during pikeperch first feeding. Aquaculture. 2018;497:260–268. doi: 10.1016/j.aquaculture.2018.08.004. DOI
Brown M.R. Nutritional value of microalgae for aquaculture. In: Cruz-Suárez L.E., Ricque-Marie D., Tapia-Salazar M., Gaxiola-Cortés M.G., editors. Avances en Nutrición Acuícola VI. Memorias del VI Simposium Internacional de Nutrición Acuícola. 3 al 6 de Septiembre del 2002. Cancún, Q. Roo, México. Universidad Autónoma de Nuevo León; Monterrey, N.L., México: 2002.
Spolaore P., Joannis-Cassan C., Duran E., Isambert A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006;101:87–96. doi: 10.1263/jbb.101.87. PubMed DOI
Amaro H.M., Guedes A.C., Malcata F.X. Advances and perspectives in using microalgae to produce biodiesel. Appl. Energy. 2011;88:3402–3410. doi: 10.1016/j.apenergy.2010.12.014. DOI
Maruyama A., Taniguchi R., Tanaka H., Ishiwata H., Higashihara T. Low-temperature adaptation of deep-sea bacteria isolated from the Japan Trench. Mar. Biol. 1997;128:705–711. doi: 10.1007/s002270050138. DOI
Görs M., Schumann R., Hepperle D., Karsten U. Quality analysis of commercial Chlorella products used as dietary supplement in human nutrition. J. Appl. Phycol. 2010;22:265–276. doi: 10.1007/s10811-009-9455-4. DOI
Nematipour G.R., Nakagawa H., Nanba K., Kasahara S., Tsujimura A., Akira K. Effect of Chlorella-extract supplement to diet on lipid accumulation of ayu. Nippon Suisan Gakkaishi. 1987;53:1687–1692. doi: 10.2331/suisan.53.1687. DOI
Bai S.C., Koo J., Kim K., Kim S. Effects of Chlorella powder as a feed additive on growth performance in juvenile Korean rockfish, Sebastes schlegeli (Hilgendorf) Aquac. Res. 2001;32:92–98. doi: 10.1046/j.1355-557x.2001.00008.x. DOI
Nakagawa H., Umino T., Tasaka Y. Usefulness of Ascophyllum meal as a feed additive for red sea bream, Pagrus major. Aquaculture. 1997;151:275–281. doi: 10.1016/S0044-8486(96)01488-3. DOI
Malinovskyi O., Veselý L., Blecha M., Křišťan J., Policar T. The substrate selection and spawning behaviour of pikeperch Sander lucioperca L. broodstock under pond conditions. Aquac. Res. 2018;49:3541–3547. doi: 10.1111/are.13819. DOI
Malinovskyi O., Kolářová J., Blecha M., Stará A., Velíšek J., Křišťan J., Policar T. Behavior and physiological status of pond-cultured pikeperch (Sander lucioperca) broodstock effected by sexual interactions throughout semi-artificial reproduction. Aquac. Int. 2019;27:1093–1107. doi: 10.1007/s10499-019-00401-6. DOI
Blecha M., Kristan J., Samarin A.M., Rodina M., Policar T. Quality and quantity of pikeperch (Sander lucioperca) spermatozoa after varying cold water treatments. J. Appl. Ichthyol. 2015;31:75–78. doi: 10.1111/jai.12853. DOI
Samarin M.A., Blecha M., Bytyutskyy D., Policar T. Post-ovulatory oocyte ageing in pikeperch (Sander lucioperca L.) and its effect on egg viability rates and the occurrence of larval malformations and ploidy anomalies. Turkish J. Fish. Aquat. Sci. 2015;15:429–435. doi: 10.4194/1303-2712-v15_2_29. DOI
Křištan T., Alavi J., Stejskal S.M.H., Policar V. Hormonal induction of ovulation in pikeperch (Sander lucioperca L.) using human chorionic gonadotropin (hCG) and mammalian GnRH analogue. Aquac. Int. 2013;21:811–818. doi: 10.1007/s10499-012-9572-y. DOI
Křištan J., Stara J., Polgesek A., Drasovean M., Kolarova A., Priborsky J., Blecha J., Svacina M., Policar P., Velisek T. Efficacy of different anaesthetics for pikeperch (Sander lucioperca L.) in relation to water temperature. Neuroendocrinol. Lett. 2014;35:81–85. PubMed
Hara A., Radin N.S. Lipid extraction of tissues with a low-toxicity solvent. Anal. Biochem. 1978;90:420–426. doi: 10.1016/0003-2697(78)90046-5. PubMed DOI
Appelqvist L.-A. Lipids in Cruciferae: III. Fatty Acid Composition of Diploid and Tetraploid Seeds of Brassica campestris and Sinapis alba Grown under Two Climatic Extremes. Physiol. Plant. 1968;21:615–625. doi: 10.1111/j.1399-3054.1968.tb07286.x. DOI
Bates D., Mächler M., Bolker B., Walker S. Fitting Linear Mixed-Effects Models using lme4. J. Stat. Softw. 2014;67:1.
Fox J., Weisberg S. An R Companion to Applied Regression. 2nd ed. Sage; Thousand Oaks, CA, USA: 2011.
Hothorn T., Bretz F., Westfall P. Simultaneous inference in general parametric models. Biometrical J. 2008;50:346–363. doi: 10.1002/bimj.200810425. PubMed DOI
Tielmann M., Schulz C., Meyer S. The effect of light intensity on performance of larval pike-perch (Sander lucioperca) Aquac. Eng. 2017;77:61–71. doi: 10.1016/j.aquaeng.2017.03.001. DOI
Therneau T.M., Grambsch P.M. Testing Proportional Hazards. Springer; New York, NY, USA: 2000. pp. 127–152.
R Core Team A Language and Environment for Statistical Computing. [(accessed on 1 March 2018)];2014 Available online: https://scholar.google.com/citations?user=yvS1QUEAAAAJ&hl=en&oi=sra.
Dabrowski K., Bardega R. Mouth size and predicted food size preferences of larvae of three cyprinid fish species. Aquaculture. 1984;40:41–46. doi: 10.1016/0044-8486(84)90214-X. DOI
Ghan D., Sprules W.G. Diet, prey selection, and growth of larval and juvenile burbot Lota lota (L.) J. Fish Biol. 1993;42:47–64. doi: 10.1111/j.1095-8649.1993.tb00305.x. DOI
Fehér M., Baranyai E., Simon E., Bársony P., Sz I., Posta J., Stündl L. The interactive effect of cobalt enrichment in Artemia on the survival and larval growth of barramundi, Lates calcarifer. Aquaculture. 2013;414–415:92–99. doi: 10.1016/j.aquaculture.2013.07.031. DOI
Lund I., Steenfeldt S.J. The effects of dietary long-chain essential fatty acids on growth and stress tolerance in pikeperch larvae (Sander lucioperca L.) Aquac. Nutr. 2011;17:191–199. doi: 10.1111/j.1365-2095.2009.00724.x. DOI
Lund I., Vilhelm P., Winding B. Comparative Biochemistry and Physiology, Part A Dietary supplementation of essential fatty acids in larval pikeperch (Sander lucioperca); short and long term effects on stress tolerance and metabolic physiology. Comp. Biochem. Physiol. Part A. 2012;162:340–348. doi: 10.1016/j.cbpa.2012.04.004. PubMed DOI
Castell J.D., Sinnhuber R.O., Wales J.H., Lee D.J. Essential fatty acids in the diet of rainbow trout (Salmo gairdneri): Growth, feed conversion and some gross deficiency symptoms. J. Nutr. 1972;102:77–85. doi: 10.1093/jn/102.1.77. PubMed DOI
Watanabe T. Importance of docosahexaenoic acid in marine larval fish. J. World Aquac. Soc. 1993;24:152–161. doi: 10.1111/j.1749-7345.1993.tb00004.x. DOI
Tocher D.R. Fatty acid requirements in ontogeny of marine and freshwater fish. Aquac. Res. 2010;41:717–732. doi: 10.1111/j.1365-2109.2008.02150.x. DOI
Rønnestad I., Thorsen A., Finn R.N. Fish larval nutrition: A review of recent advances in the roles of amino acids. Aquaculture. 1999;177:201–216. doi: 10.1016/S0044-8486(99)00082-4. DOI
Finn R., Rønnestad I., van der Meeren T., Fyhn H. Fuel and metabolic scaling during the early life stages of Atlantic cod Gadus morhua. Mar. Ecol. Prog. Ser. 2002;243:217–234. doi: 10.3354/meps243217. DOI
Watanabe T. Lipid nutrition in fish. Comp. Biochem. Physiol. Part B Comp. Biochem. 1982;73:3–15. doi: 10.1016/0305-0491(82)90196-1. DOI
Lochmann R.T., Gatlin D.M. Essential fatty acid requirement of juvenile red drum (Sciaenops ocellatus) Fish Physiol. Biochem. 1993;12:221–235. doi: 10.1007/BF00004370. PubMed DOI
Williams K.C., Barlow C.G., Rodgers L., Agcopra C. Dietary composition manipulation to enhance the performance of juvenile barramundi (Lates calcarifer Bloch) reared in cool water. Aquac. Res. 2006;37:914–927. doi: 10.1111/j.1365-2109.2006.01513.x. DOI
Dhert P., Lavens P., Sorgeloos P. Stress evaluation: A tool for quality control of hatchery-produced shrimp and fish fry. Aquac. Eur. 1992;17:6–10.
Sakakura Y., Shiotani S., Chuda H., Hagiwara A. Flow field control for larviculture of the seven-band grouper Epinephelus septemfasciatus. Aquaculture. 2007;268:209–215. doi: 10.1016/j.aquaculture.2007.04.042. DOI
Dhert P., Lim L.C., Lavens P., Chao T.M., Chou R., Sorgeloos P. Effect of dietary essential fatty acids on egg quality and larviculture success of the greasy grouper (Epinephelus tauvina F.): Preliminary results. In: Lavens P., Sorgeloos P., Jaspers E., Otlevier F., editors. Larvi’91—Fish & Crustacean Larviculture Symposium, European Aquaculture Society, Special Publication No. 15. European Aquaculture Society; Gent, Belgium: 1991. pp. 51–55.
Sinnhuber R. The role of fats. In: Neuhaus O.W., Halver J.E., editors. Fish in Research. Academic Press; New York, NY, USA: 1969. pp. 245–261.
Lund I., El Kertaoui N., Izquierdo M.S., Dominguez D., Hansen B.W., Kestemont P. The importance of phospholipids combined with long-chain PUFA in formulated diets for pikeperch (Sander lucioperca) larvae. Br. J. Nutr. 2018;120:628–644. doi: 10.1017/S0007114518001794. PubMed DOI
Abi-Ayad S.-M.E.-A., Boutiba Z., Mélard C., Kestemont P. Dynamics of Total Body Fatty Acids During Early Ontogeny of Pikeperch (Sander lucioperca) Larvae. Fish Physiol. Biochem. 2004;30:129–136. doi: 10.1007/s10695-005-3417-9. DOI
Henderson R.J., Park M.T., Sargent J.R. The desaturation and elongation of 14C-labelled polyunsaturated fatty acids by pike (Esox lucius L.) in vivo. Fish Physiol. Biochem. 1995;14:223–235. doi: 10.1007/BF00004313. PubMed DOI
Solar bioreactors used for the industrial production of microalgae