Differential effects of habitat loss on occupancy patterns of the eastern green lizard Lacerta viridis at the core and periphery of its distribution range
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
32134932
PubMed Central
PMC7058328
DOI
10.1371/journal.pone.0229600
PII: PONE-D-19-24402
Knihovny.cz E-resources
- MeSH
- Ecology methods MeSH
- Ecosystem MeSH
- Lizards growth & development MeSH
- Probability MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Bulgaria MeSH
- Czech Republic MeSH
The effects of habitat loss on the distribution of populations are often linked with species specialization degree. Specialist species can be more affected by changes in landscape structure and local patch characteristics compared to generalist species. Moreover, the spatial scale at which different land covers (eg. habitat, cropland, urban areas) affect specialist species can be smaller. Specialization is usually assumed as a constant trait along the distribution range of species. However, for several taxa, there is evidence of higher specialization degree in peripheral populations compared with populations in the core. Hence, peripheral populations should have a higher sensitivity to habitat loss, and strongest effects should be found at a smaller spatial scale. To test these expectations, we implemented a patch-landscape approach at different spatial scales, and compared effects of landscape structure and patch characteristics on occupancy probability among northern peripheral, more specialized populations (Czech Republic) and core populations (Bulgaria) of the eastern green lizard Lacerta viridis. We found that landscape structure and patch characteristics affect differently the occupancy probability of Lacerta viridis in each region. Strongest effects of habitat loss were found at a spatial scale of 150m around patches in the periphery, but at a scale of 500m in the core. In the periphery occupancy probability of populations was principally affected by landscape composition, and the effect of habitat quality was stronger compared to core populations. In the core, persistence of populations was mainly explained by characteristics of the spatial configuration of habitat patches. We discuss possible ecological mechanisms behind the relationship between sensitivity to habitat loss, populations' specialization degree and position in the distribution range, and suggest conservation measures for L. viridis.
Department of Conservation Biology Helmholtz Center for Environmental Research UFZ Leipzig Germany
Department of Herpetology Zoological Research Museum Alexander Koenig ZFMK Bonn Germany
Department of Landscape Ecology Helmholtz Center for Environmental Research UFZ Leipzig Germany
German Center for Integrative Biodiversity Research Jena Halle Leipzig Leipzig Germany
See more in PubMed
Fahrig L. Effects of Habitat Fragmentation on Biodiversity. Annual Review of Ecology, Evolution, and Systematics. 2003;34(1):487–515.
Blanchet S, Rey O, Etienne R, Lek S, Loot G. Species-specific responses to landscape fragmentation: implications for management strategies. Evol Appl. 2010;3(3):291–304. 10.1111/j.1752-4571.2009.00110.x PubMed DOI PMC
Jauker B, Krauss J, Jauker F, Steffan-Dewenter I. Linking life history traits to pollinator loss in fragmented calcareous grasslands. Landscape Ecology. 2013;28(1):107–20.
Swihart RK, Gehring TM, Kolozsvary MB, Nupp TE. Responses of ‘resistant’ vertebrates to habitat loss and fragmentation: the importance of niche breadth and range boundaries. Diversity and Distributions. 2003;9(1):1–18.
Davies KF, Margules CR, Lawrence JF. A synergistic effect puts rare, specialized species at greater risk of extinction. Ecology. 2004;85(1):265–71.
Henle K, Davies KF, Kleyer M, Margules C, Settele J. Predictors of Species Sensitivity to Fragmentation. Biodiversity & Conservation. 2004;13(1):207–51.
Keinath DA, Doak DF, Hodges KE, Prugh LR, Fagan W, Sekercioglu CH, et al. A global analysis of traits predicting species sensitivity to habitat fragmentation. Global Ecology and Biogeography. 2017;26(1):115–27.
Krauss J, Steffan-Dewenter I, Tscharntke T. How does landscape context contribute to effects of habitat fragmentation on diversity and population density of butterflies? Journal of Biogeography. 2003;30(6):889–900.
Öckinger E, Schweiger O, Crist TO, Debinski DM, Krauss J, Kuussaari M, et al. Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis. Ecology Letters. 2010;13(8):969–79. 10.1111/j.1461-0248.2010.01487.x PubMed DOI
Devictor V, Julliard R, Jiguet F. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos. 2008;117(4):507–14.
Hoehn M, Sarre SD, Henle K. The tales of two geckos: does dispersal prevent extinction in recently fragmented populations? Molecular Ecology. 2007;16(16):3299–312. 10.1111/j.1365-294X.2007.03352.x PubMed DOI
Soga M, Koike S. Patch isolation only matters for specialist butterflies but patch area affects both specialist and generalist species. Journal of Forest Research. 2013;18(3):270–8.
Ye X, Skidmore AK, Wang T. Within-patch habitat quality determines the resilience of specialist species in fragmented landscapes. Landscape Ecology. 2013;28(1):135–47.
Carrara E, Arroyo-Rodríguez V, Vega-Rivera JH, Schondube JE, de Freitas SM, Fahrig L. Impact of landscape composition and configuration on forest specialist and generalist bird species in the fragmented Lacandona rainforest, Mexico. Biological Conservation. 2015;184:117–26.
Püttker T, Bueno AA, dos Santos de Barros C, Sommer S, Pardini R. Habitat specialization interacts with habitat amount to determine dispersal success of rodents in fragmented landscapes. J Mammal. 2013;94(3):714–26.
Vergara PM, Armesto JJ. Responses of Chilean forest birds to anthropogenic habitat fragmentation across spatial scales. Landscape Ecology. 2009;24(1):25–38.
Jackson HB, Fahrig L. What size is a biologically relevant landscape? Landscape Ecology. 2012;27(7):929–41.
Cozzi G, Müller CB, Krauss J. How do local habitat management and landscape structure at different spatial scales affect fritillary butterfly distribution on fragmented wetlands? Landscape Ecology. 2008;23(3):269–83.
Morris DW. Coexistence of Specialist and Generalist Rodents Via Habitat Selection. Ecology. 1996;77(8):22352–2364.
Miguet P, Jackson HB, Jackson ND, Martin AE, Fahrig L. What determines the spatial extent of landscape effects on species? Landscape Ecology. 2016;31(6):1177–94.
Kühnelt W. Grundriß der Ökologie mit besonderer Berücksichtigung der Tierwelt. Jena: Fischer Verlag; 1965.
Böhme W, Rödder D. Amphibien und Reptilien: Verbreitungs- und Verhaltensänderungen aufgrund der Erderwärmung. In: Lozán JL, Grassl H., Karbe L. & Jendritzky G editor. Warnsignal Klima: Gefahren für Pflanzen, Tiere und Menschen. 2 ed. Hamburg2014. p. 77–81.
Olsson M. Ecology of a Swedish population of the sand lizard (Lacerta agilis)- preliminary report. Mertensiella. 1988;1:86–91.
Prieto-Ramirez AM, Pe’er G, Rödder D, Henle K. Realized niche and microhabitat selection of the eastern green lizard (Lacerta viridis) at the core and periphery of its distribution range. Ecology and evolution. 2018;8(22):11322–36. 10.1002/ece3.4612 PubMed DOI PMC
Blanco-Fontao B, Fernández-Gil A, Obeso JR, Quevedo M. Diet and habitat selection in Cantabrian Capercaillie (Tetrao urogallus cantabricus): ecological differentiation of a rear-edge population. Journal of Ornithology. 2010;151(2):269–77.
Svensson BW. Changes in Occupancy, Niche Breadth and Abundance of Three Gyrinus Species as Their Respective Range Limits Are Approached. Oikos. 1992;63(1):147–56.
Mollov IA. Habitat distribution of the amphibians and reptiles in the city of Plovdiv, Bulgaria. Biharean Biologist. 2011;5(1):25–31.
Lacerta viridis. The IUCN Red List of Threatened Species 2009: e.T61530A12507156. http://dx.doi.org/10.2305 [Internet]. 2009.
ESRI. ArcGIS Desktop: Release 10.3.1.: Redlands, CA: Environmental Systems Research Institute; 2015.
Mackenzie DI, Royle JA. Designing occupancy studies: general advice and allocating survey effort. Journal of Applied Ecology. 2005;42(6):1105–14.
Janssen I, Zuiderwijk A. Detection probability derived from the national reptile monitoring program in the Netherlands. Monitoring Network of Reptile, Amphibian & Fish Conservation the Netherlands, RAVON. http://eumon.ckff.si/files/porto/3_janssen.pdf; 2006.
Sewell D, Guillera-Arroita G, Griffiths RA, Beebee TJC. When Is a Species Declining? Optimizing Survey Effort to Detect Population Changes in Reptiles. PLoS One. 2012;7(8):e43387 10.1371/journal.pone.0043387 PubMed DOI PMC
Korsós Z. Comparative niche analysis of two sympatric lizard species (Lacerta viridis and Lacerta agilis). Vertebrata Hungarica. 1983;22:5–14.
ESRI. ArcGIS Desktop: Release 10.6. Redlands, CA: Environmental Systems Research Institute; 2018.
Solutions EVI. ENVI 5.0. Boulder, Colorado.
IPR. Plán využití ploch—funkční plochy (územní plán). http://www.geoportalpraha.cz/cs/opendata/21733E1F-21B7-4ABC-B1C2-DC19C0237380. 2010.
Grimm A, Prieto Ramírez AM, Moulherat S, Reynaud J, Henle K. Life-history trait database of European reptile species. Nature Conservation. 2014;9:45–67.
Mangiacotti M, Scali S, Sacchi R, Bassu L, Nulchis V, Corti C. Assessing the Spatial Scale Effect of Anthropogenic Factors on Species Distribution. PLoS One. 2013;8(6):e67573 10.1371/journal.pone.0067573 PubMed DOI PMC
Saint-Girons H, Bradshaw SD. Séd enlaril é, déplacements et répartit ion des individus dans une population de Lacerla viridis (Lau renti, 1768) (Lacertil ia, Lacertidae). Bijdragen tot de Dierkunde. 1989;59(2):63–70.
Böker T. Zur Ökologie der Smaragdeidechse Lacerta viridis (LAURENTI, 1768) am Mittelrhein II. Populationsstruktur, Phänologie Salamandra. 1990;26(2–3):97–115.
Moser J. Beutrag zur Kenntnis der Verbreitung der Smaragdeidechse in Oberösterreich. Beitr Naturk Oberösterreichs. 1998;6:391–2.
Waitzmann M, Sandmaier P. Zur Verbreitung, Morphologie und Habitatwahl der Reptilien im Donautal zwischen Passau und Linz (Niederbayern, Oberösterreich). Herpetozoa. 1990;3((1/2)):25–53.
MacArthur RH, MacArthur JW. On Bird Species Diversity. Ecology. 1961;42(3):594–8.
Conrad O, Bechtel B, Bock M, Dietrich H, Fischer E, Gerlitz L, et al. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991–2007. doi: 105194/gmd-8-1991-2015 2015.
McGarigal K, Cushman SA, Ene E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Available at the following web site: http://www.umass.edu/landeco/research/fragstats/fragstats.html: Computer software program produced by the authors at the University of Massachusetts, Amherst.; 2012.
MacKenzie DI, Nichols JD, Lachman GB, Droege S, Andrew Royle J, Langtimm CA. Estimating site occupancy rates when detection probabilities are less than one. Ecology. 2002;83(8):2248–55.
Fiske I, Chandler R. Unmarked: An R Package for Fitting Hierarchical Models of Wildlife Occurrence and Abundance. Journal of Statistical Software. 2011;43(10):1–23.
Team RC. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria: 2018.
Burnham KP, Anderson DR. Model selection and multimodel inference: A practical information-theoretic approach 2nd edition ed. New York: Springer-Verlag; 2002.
Augustin NH, Mugglestone MA, Buckland ST. An Autologistic Model for the Spatial Distribution of Wildlife. Journal of Applied Ecology. 1996;33(2):339–47.
MacKenzie DI, Bailey LL. Assessing the fit of site-occupancy models. Journal of Agricultural, Biological, and Environmental Statistics. 2004;9(3):300–18.
Mazerolle MJ. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2.2–1. https://cran.r-project.org/package=AICcmodavg. 2019.
Bartón K. MuMIn: Multi-Model Inference. https://cran.r-project.org/web/packages/MuMIn/index.html; 2015.
Fielding AH, Bell JF. A review of methods for the assessment of prediction errors inconservation presence/absence models. Environmental Conservation. 1997;24(1):38–49.
Freeman EA, Moisen G. PresenceAbsence: An R Package for Presence-Absence Model Analysis. Journal of Statistical Software. 2008;23(11):1–31.
Fahrig L. How much habitat is enough? Biological Conservation. 2001;100(1):65–74.
Cushman SA, Brad M, Adriaensen F, Beier P, Shirley M, Zeller K. Biological corridors and connectivity In: Macdonald D, Willis K, editors. Key Topics in Conservation Biology 2: John Wiley and Sons, Oxford; 2013.
Brachet S, Olivieri II, Godelle B, Klein E, Frascaria-Lacoste N, Gouyon PH. Dispersal and metapopulation viability in a heterogeneous landscape. Journal of theoretical biology. 1999;198(4):479–95. 10.1006/jtbi.1999.0926 PubMed DOI
Baguette M, Stevens V, Clobert J. The pros and cons of applying the movement ecology paradigm for studying animal dispersal. Movement Ecology. 2014;2:13.
Vasudev D, Fletcher Jr RJ, Goswami VR, Krishnadas M. From dispersal constraints to landscape connectivity: lessons from species distribution modeling. Ecography. 2015;38(10):967–78.
Martin JM, Heske EJ. Juvenile Dispersal of Franklin's Ground Squirrel (Spermophilus franklinii) from a Prairie "Island". The American Midland Naturalist. 2005;153(2):444–9.
Duggan JM, Schooley RL, Heske EJ. Modeling occupancy dynamics of a rare species, Franklin’s ground squirrel, with limited data: are simple connectivity metrics adequate? Landscape Ecology. 2011;26(10):1477–90.
Ronce O, Clobert J, Massot M. Natal dispersal and senescence. Proceedings of the National Academy of Sciences. 1998;95(2):600–5. PubMed PMC
Cote J, Clobert J. Social personalities influence natal dispersal in a lizard. Proceedings of the Royal Society B: Biological Sciences. 2007;274(1608):383–90. 10.1098/rspb.2006.3734 PubMed DOI PMC
Brito JC, Paulo OS, Crespo EG. Distrubution and habitats of schreiber's green lizard (Lacerta schreiberi) in Portugal. Herpetological Journal. 1998;8:187–94.
Michaelides G, Kati V. Diversity patterns and conservation management of the lizard community in a Mediterranean reserve (Cyprus). J Biol Res- Thessalon. 2009;12:211–20.
MacArthur RH, Wilson EO. The Theory of Island Biogeography: Princeton, New Jersey: Princeton University Press; 1967.
Hanski I. Metapopulation dynamics. Nature. 1998;396(6706):41–9.
Andrén H. Effects of Habitat Fragmentation on Birds and Mammals in Landscapes with Different Proportions of Suitable Habitat: A Review. Oikos. 1994;71(3):355–66.
Fahrig L. Rethinking patch size and isolation effects: the habitat amount hypothesis. Journal of Biogeography. 2013;40(9):1649–63.
Melo GL, Sponchiado J, Cáceres NC, Fahrig L. Testing the habitat amount hypothesis for South American small mammals. Biological Conservation. 2017;209:304–14.
Villard M-A, Metzger JP. REVIEW: Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. Journal of Applied Ecology. 2014;51(2):309–18.
Fletcher JRJ, Ries L, Battin J, Chalfoun AD. The role of habitat area and edge in fragmented landscapes: definitively distinct or inevitably intertwined?This review is one of a series dealing with some aspects of the impact of habitat fragmentation on animals and plants. This series is one of several virtual symposia focussing on ecological topics that will be published in the Journal from time to time. Canadian Journal of Zoology. 2007;85(10):1017–30.
Helzer CJ, Jelinski DE. The realtive importance of patch area and perimeter-area ratio to grassland breeding birds. Ecological Applications. 1999;9(4):1448–58.
Ries L, Robert J. Fletcher J, Battin J, Sisk TD. Ecological Responses to Habitat Edges: Mechanisms, Models, and Variability Explained. Annual Review of Ecology, Evolution, and Systematics. 2004;35(1):491–522.
Bender DJ, Contreras TA, Fahrig L. Habitat loss and population decline: A meta-analysis of the patch size effect. Ecology. 1998;79(2):517–33.
Thomas JA, Rose RJ, Clarke RT, Thomas CD, Webb NR. Intraspecific variation in habitat availability among ectothermic animals near their climatic limits and their centres of range. Functional Ecology. 1999;13:55–64.
Lappalainen J, Soininen J. Latitudinal gradients in niche breadth and position—regional patterns in freshwater fish. Naturwissenschaften. 2006;93(5):246–50. 10.1007/s00114-006-0093-2 PubMed DOI
Biedermann R. Patch occupancy of two hemipterans sharing a common host plant. Journal of Biogeography. 2004;31(7):1179–84.
Münsch T, Helbing F, Fartmann T. Habitat quality determines patch occupancy of two specialist Lepidoptera species in well-connected grasslands. Journal of Insect Conservation. 2019;23(2):247–58.
Gardiner R, Bain G, Hamer R, Jones ME, Johnson CN. Habitat amount and quality, not patch size, determine persistence of a woodland-dependent mammal in an agricultural landscape. Landscape Ecology. 2018;33(11):1837–49.
Gomez Md, Goijman AP, Coda J, Serafini V, Priotto J. Small mammal responses to farming practices in central Argentinian agroecosystems: The use of hierarchical occupancy models. Austral Ecology. 2018;43(7):828–38.
Thompson ME, Halstead BJ, Donnelly MA. Thermal quality influences habitat use of two anole species. Journal of Thermal Biology. 2018;75:54–61. 10.1016/j.jtherbio.2018.05.007 PubMed DOI
Donald PF, Greenwood JJD. Spatial patterns of range contraction in British breeding birds. Ibis. 2001;143(3):593–601.
Yackulic CB, Sanderson EW, Uriarte M. Anthropogenic and environmental drivers of modern range loss in large mammals. Proceedings of the National Academy of Sciences. 2011;108(10):4024–9. PubMed PMC
Brown JH. On the relationship between abundance and distribution of species. Am Nat. 1984;124(2):255–79.
Hampe A, Petit RJ. Conserving biodiversity under climate change: the rear edge matters. Ecology Letters. 2005;8(5):461–7. 10.1111/j.1461-0248.2005.00739.x PubMed DOI
Peterman WE, Feist SM, Semlitsch RD, Eggert LS. Conservation and management of peripheral populations: Spatial and temporal influences on the genetic structure of wood frog (Rana sylvatica) populations. Biological Conservation. 2013;158:351–8.
Yurkowski DJ, Ferguson S, Choy ES, Loseto LL, Brown TM, Muir DCG, et al. Latitudinal variation in ecological opportunity and intraspecific competition indicates differences in niche variability and diet specialization of Arctic marine predators. Ecology and evolution. 2016;6(6):1666–78. 10.1002/ece3.1980 PubMed DOI PMC
Lucas PM, González-Suárez M, Revilla E. Toward multifactorial null models of range contraction in terrestrial vertebrates. Ecography. 2016;39(11):1100–8.
Boakes EH, Isaac NJB, Fuller RA, Mace GM, McGowan PJK. Examining the relationship between local extinction risk and position in range. Conservation Biology. 2018;32(1):229–39. 10.1111/cobi.12979 PubMed DOI PMC
Henle K, Andres C, Bernhard D, Grimm A, Stoev P, Tzankov N, et al. Are species genetically more sensitive to habitat fragmentation on the periphery of their range compared to the core? A case study on the sand lizard (Lacerta agilis). Landscape Ecology. 2016;32(1):131–45.
Banner KM, Higgs MD. Considerations for assessing model averaging of regression coefficients. Ecological Applications. 2017;27(1):78–93. 10.1002/eap.1419 PubMed DOI
Fynn IEM, Campbell J. Forest fragmentation analysis from multiple imaging formats. Journal of Landscape Ecology. 2019;12(1):1–15.