Structure and Properties of High‑Strength Ti Grade 4 Prepared by Severe Plastic Deformation and Subsequent Heat Treatment
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
P108/12/G043
Grantová Agentura České Republiky
LM2015056
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015074
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015073
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015087
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32138179
PubMed Central
PMC7084982
DOI
10.3390/ma13051116
PII: ma13051116
Knihovny.cz E-zdroje
- Klíčová slova
- PAS, TEM, Ti grade 4, XRD, conform SPD, neutron diffraction,
- Publikační typ
- časopisecké články MeSH
Severe plastic deformation represented by three passes in Conform SPD and subsequent rotary swaging was applied on Ti grade 4. This process caused extreme strengthening of material, accompanied by reduction of ductility. Mechanical properties of such material were then tuned by a suitable heat treatment. Measurements of in situ electrical resistance, in situ XRD and hardness indicated the appropriate temperature to be 450 °C for the heat treatment required to obtain desired mechanical properties. The optimal duration of annealing was stated to be 3 h. As was verified by neutron diffraction, SEM and TEM microstructure observation, the material underwent recrystallization during this heat treatment. That was documented by changes of the grain shape and evaluation of crystallite size, as well as of the reduction of internal stresses. In annealed state, the yield stress and ultimate tensile stress decreased form 1205 to 871 MPa and 1224 to 950 MPa, respectively, while the ductility increased from 7.8% to 25.1%. This study also shows that mechanical properties of Ti grade 4 processed by continual industrially applicable process (Conform SPD) are comparable with those obtained by ECAP.
Department of Physics of Materials Charles University Ke Karlovu 5 121 16 Prague Czech Republic
European Spallation Source ERIC 222 70 Lund Sweden
Nuclear Physics Institute ASCR in Řež Husinec‑Řež 130 250 68 Řež Czech Republic
Zobrazit více v PubMed
Barile C., Casavola C., Pappalettera G., Pappalettere C. Acoustic sources from damage propagation in Ti grade 5. Measurement. 2016;91:73–76. doi: 10.1016/j.measurement.2016.05.002. DOI
Eftekhari M., Faraji G., Nikbakht S., Rashed R., Sharifzadeh R., Hildyard R., Mohammadpour M. Processing and characterization of nanostructured Grade 2 Ti processed by combination of warm isothermal ECAP and extrusion. Mater. Sci. Eng. A. 2017;703:551–558. doi: 10.1016/j.msea.2017.07.088. DOI
Astarita A., Prisco U. Tensile Properties of a Hot Stretch Formed Ti-6Al-4V Alloy Component for Aerospace Applications. Manuf. Technol. 2017;17:141–147.
Nazari K.A., Hilditch T., Dargusch M.S., Nouri A. Functionally graded porous scaffolds made of Ti-based agglomerates. J. Mech. Behav. Biomed. Mater. 2016;63:157–163. doi: 10.1016/j.jmbbm.2016.06.016. PubMed DOI
Průša F., Bernatiková A., Palan J. Ultra-High Strength Ti Grade 4 Prepared by Intensive Plastic Deformation. Manuf. Technol. 2017;17:819–822.
Gunderov D.V., Polyakov A.V., Semenova I.P., Raab G.I., Churakova A.A., Gimaltdinova E.I., Sabirov I., Segurado J., Sitdikov V.D., Alexandrov I.V., et al. Evolution of microstructure, macrotexture and mechanical properties of commercially pure Ti during ECAP-conform processing and drawing. Mater. Science Eng. A. 2013;562:128–136. doi: 10.1016/j.msea.2012.11.007. DOI
Palán J., Procházka R., Zemko M. The microstructure and mechanical properties evaluation of UFG Titanium Grade 4 in relation to the technological aspects of the CONFORM SPD process. Procedia Eng. 2017;207:1439–1444. doi: 10.1016/j.proeng.2017.10.910. DOI
Gall T.L., Boyer H.E. Metals Handbook (Desk Edition) Volume 17 American Society for Metals; Metals Park, OH, USA: 1985.
Palán J., Procházka R., Džugan J., Nacházel J., Duchek M., Németh G., Máthis K., Minárik P., Horváth K. Comprehensive Evaluation of the Properties of Ultrafine to Nanocrystalline Grade 2 TitaniumWires. Materials. 2018;11:2522. doi: 10.3390/ma11122522. PubMed DOI PMC
Palán J. Continuous production of ultrafine to nanocrystalline wires of pure titanium; Proceedings of the Fems Junior Euromat Conference 2018; Budapest, Hungary. 8–12 July 2018.
Wang M., Wang Y., Huang A., Gao L., Li Y., Huang C. Promising Tensile and Fatigue Properties of Commercially Pure Titanium Processed by Rotary Swaging and Annealing Treatment. Materials. 2018;11:2261. doi: 10.3390/ma11112261. PubMed DOI PMC
Elias C.N., Meyers M.A., Valiev R.Z., Monteiro S.N. Ultrafine grained titanium for biomedical applications: An overview of performance. J. Mater. Res. Technol. 2013;2:340–350. doi: 10.1016/j.jmrt.2013.07.003. DOI
Gu X., Ma A., Jiang J., Li H., Song D., Wu H., Yuan Y. Simultaneously improving mechanical properties and corrosion resistance of pure Ti by continuous ECAP plus short-duration annealing. Mater. Charact. 2018;138:38–47. doi: 10.1016/j.matchar.2018.01.050. DOI
Hájek M., Veselý J., Cieslar M. Precision of electrical resistivity measurements. Mater. Sci. Eng. A. 2007;462:339–342. doi: 10.1016/j.msea.2006.01.175. DOI
Zháňal P., Václavová K., Hadzima B., Harcuba P., Stráský J., Janeček M., Polyakova V., Semenova I., Hájek M., Hajizadeh K. Thermal stability of ultrafine-grained commercial purity Ti and Ti-6Al-7Nb alloy investigated by electrical resistance, microhardness and scanning electron microscopy. Mater. Sci. Eng. A. 2016;651:886–892. doi: 10.1016/j.msea.2015.11.029. DOI
Bečvář F., Čížek J., Procházka I., Janotová J. The asset of ultra-fast digitizers for positron-lifetime spectroscopy. Nucl. Instrum. Methods Phys. Res. A. 2005;539:372–385. doi: 10.1016/j.nima.2004.09.031. DOI
Robles J.M.C., Ogando E., Plazaola F. Positron lifetime calculation for the elements of the periodic table. J. Physics: Condens. Matter. 2007;19:176222–176229. doi: 10.1088/0953-8984/19/17/176222. PubMed DOI
Čížek J., Janeček M., Srba O., Kužel R., Barnovská Z., Procházla I., Dobatkin S. Evolution of defects in copper deformed by high-pressure torsion. Acta Mater. 2011;59:2322–2329. doi: 10.1016/j.actamat.2010.12.028. DOI
Janeček M., Stráský J., Čížek J., Harcuba P., Václavová K., Polyakova V.V., Semenova I.P. Mechanical Properties and Dislocation Structure Evolution in Ti6Al7Nb Alloy Processed by High Pressure Torsion. Metall. Mater. Trans. A. 2014;45:7–15. doi: 10.1007/s11661-013-1763-2. DOI
Vehanen A., Mijnarends P.E. In: Positrons in Solids. Hautojärvi P., editor. Springer-Verlag; Berlin/Heidelberg, Germany: 1979.
Janeček M., Čížek J., Stráský J., Václavová K., Hruška P., Polyakova V., Gatina S., Polyakova V., Semenova I. Microstructure evolution in solution treated Ti15Mo alloy processed by high pressure torsion. Mater. Charact. 2014;98:233–240. doi: 10.1016/j.matchar.2014.10.024. DOI