Structure and Properties of High‑Strength Ti Grade 4 Prepared by Severe Plastic Deformation and Subsequent Heat Treatment

. 2020 Mar 03 ; 13 (5) : . [epub] 20200303

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32138179

Grantová podpora
P108/12/G043 Grantová Agentura České Republiky
LM2015056 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015074 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015073 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015087 Ministerstvo Školství, Mládeže a Tělovýchovy

Severe plastic deformation represented by three passes in Conform SPD and subsequent rotary swaging was applied on Ti grade 4. This process caused extreme strengthening of material, accompanied by reduction of ductility. Mechanical properties of such material were then tuned by a suitable heat treatment. Measurements of in situ electrical resistance, in situ XRD and hardness indicated the appropriate temperature to be 450 °C for the heat treatment required to obtain desired mechanical properties. The optimal duration of annealing was stated to be 3 h. As was verified by neutron diffraction, SEM and TEM microstructure observation, the material underwent recrystallization during this heat treatment. That was documented by changes of the grain shape and evaluation of crystallite size, as well as of the reduction of internal stresses. In annealed state, the yield stress and ultimate tensile stress decreased form 1205 to 871 MPa and 1224 to 950 MPa, respectively, while the ductility increased from 7.8% to 25.1%. This study also shows that mechanical properties of Ti grade 4 processed by continual industrially applicable process (Conform SPD) are comparable with those obtained by ECAP.

Zobrazit více v PubMed

Barile C., Casavola C., Pappalettera G., Pappalettere C. Acoustic sources from damage propagation in Ti grade 5. Measurement. 2016;91:73–76. doi: 10.1016/j.measurement.2016.05.002. DOI

Eftekhari M., Faraji G., Nikbakht S., Rashed R., Sharifzadeh R., Hildyard R., Mohammadpour M. Processing and characterization of nanostructured Grade 2 Ti processed by combination of warm isothermal ECAP and extrusion. Mater. Sci. Eng. A. 2017;703:551–558. doi: 10.1016/j.msea.2017.07.088. DOI

Astarita A., Prisco U. Tensile Properties of a Hot Stretch Formed Ti-6Al-4V Alloy Component for Aerospace Applications. Manuf. Technol. 2017;17:141–147.

Nazari K.A., Hilditch T., Dargusch M.S., Nouri A. Functionally graded porous scaffolds made of Ti-based agglomerates. J. Mech. Behav. Biomed. Mater. 2016;63:157–163. doi: 10.1016/j.jmbbm.2016.06.016. PubMed DOI

Průša F., Bernatiková A., Palan J. Ultra-High Strength Ti Grade 4 Prepared by Intensive Plastic Deformation. Manuf. Technol. 2017;17:819–822.

Gunderov D.V., Polyakov A.V., Semenova I.P., Raab G.I., Churakova A.A., Gimaltdinova E.I., Sabirov I., Segurado J., Sitdikov V.D., Alexandrov I.V., et al. Evolution of microstructure, macrotexture and mechanical properties of commercially pure Ti during ECAP-conform processing and drawing. Mater. Science Eng. A. 2013;562:128–136. doi: 10.1016/j.msea.2012.11.007. DOI

Palán J., Procházka R., Zemko M. The microstructure and mechanical properties evaluation of UFG Titanium Grade 4 in relation to the technological aspects of the CONFORM SPD process. Procedia Eng. 2017;207:1439–1444. doi: 10.1016/j.proeng.2017.10.910. DOI

Gall T.L., Boyer H.E. Metals Handbook (Desk Edition) Volume 17 American Society for Metals; Metals Park, OH, USA: 1985.

Palán J., Procházka R., Džugan J., Nacházel J., Duchek M., Németh G., Máthis K., Minárik P., Horváth K. Comprehensive Evaluation of the Properties of Ultrafine to Nanocrystalline Grade 2 TitaniumWires. Materials. 2018;11:2522. doi: 10.3390/ma11122522. PubMed DOI PMC

Palán J. Continuous production of ultrafine to nanocrystalline wires of pure titanium; Proceedings of the Fems Junior Euromat Conference 2018; Budapest, Hungary. 8–12 July 2018.

Wang M., Wang Y., Huang A., Gao L., Li Y., Huang C. Promising Tensile and Fatigue Properties of Commercially Pure Titanium Processed by Rotary Swaging and Annealing Treatment. Materials. 2018;11:2261. doi: 10.3390/ma11112261. PubMed DOI PMC

Elias C.N., Meyers M.A., Valiev R.Z., Monteiro S.N. Ultrafine grained titanium for biomedical applications: An overview of performance. J. Mater. Res. Technol. 2013;2:340–350. doi: 10.1016/j.jmrt.2013.07.003. DOI

Gu X., Ma A., Jiang J., Li H., Song D., Wu H., Yuan Y. Simultaneously improving mechanical properties and corrosion resistance of pure Ti by continuous ECAP plus short-duration annealing. Mater. Charact. 2018;138:38–47. doi: 10.1016/j.matchar.2018.01.050. DOI

Hájek M., Veselý J., Cieslar M. Precision of electrical resistivity measurements. Mater. Sci. Eng. A. 2007;462:339–342. doi: 10.1016/j.msea.2006.01.175. DOI

Zháňal P., Václavová K., Hadzima B., Harcuba P., Stráský J., Janeček M., Polyakova V., Semenova I., Hájek M., Hajizadeh K. Thermal stability of ultrafine-grained commercial purity Ti and Ti-6Al-7Nb alloy investigated by electrical resistance, microhardness and scanning electron microscopy. Mater. Sci. Eng. A. 2016;651:886–892. doi: 10.1016/j.msea.2015.11.029. DOI

Bečvář F., Čížek J., Procházka I., Janotová J. The asset of ultra-fast digitizers for positron-lifetime spectroscopy. Nucl. Instrum. Methods Phys. Res. A. 2005;539:372–385. doi: 10.1016/j.nima.2004.09.031. DOI

Robles J.M.C., Ogando E., Plazaola F. Positron lifetime calculation for the elements of the periodic table. J. Physics: Condens. Matter. 2007;19:176222–176229. doi: 10.1088/0953-8984/19/17/176222. PubMed DOI

Čížek J., Janeček M., Srba O., Kužel R., Barnovská Z., Procházla I., Dobatkin S. Evolution of defects in copper deformed by high-pressure torsion. Acta Mater. 2011;59:2322–2329. doi: 10.1016/j.actamat.2010.12.028. DOI

Janeček M., Stráský J., Čížek J., Harcuba P., Václavová K., Polyakova V.V., Semenova I.P. Mechanical Properties and Dislocation Structure Evolution in Ti6Al7Nb Alloy Processed by High Pressure Torsion. Metall. Mater. Trans. A. 2014;45:7–15. doi: 10.1007/s11661-013-1763-2. DOI

Vehanen A., Mijnarends P.E. In: Positrons in Solids. Hautojärvi P., editor. Springer-Verlag; Berlin/Heidelberg, Germany: 1979.

Janeček M., Čížek J., Stráský J., Václavová K., Hruška P., Polyakova V., Gatina S., Polyakova V., Semenova I. Microstructure evolution in solution treated Ti15Mo alloy processed by high pressure torsion. Mater. Charact. 2014;98:233–240. doi: 10.1016/j.matchar.2014.10.024. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...