Alveolar Socket Preservation with Different Autologous Graft Materials: Preliminary Results of a Multicenter Pilot Study in Human
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32150927
PubMed Central
PMC7084996
DOI
10.3390/ma13051153
PII: ma13051153
Knihovny.cz E-zdroje
- Klíčová slova
- TT transformer, autologous tooth graft, bone substitute materials, bone tissue regeneration,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The histological and histomorphometrical results were evaluated between vital whole and non-vital endodontically treated teeth used as autologous grafts in post-extractive socket preservation procedures. METHODS: Twenty-eight patients (average age 51.79 ± 5.97 years) with post-extractive defects were enrolled in five dentistry centers. All patients were divided into two groups: with whole teeth (Group 1) and teeth with endodontical root canal therapy (Group 2). The extracted teeth were processed with the Tooth Transformer device to obtain a demineralized and granulated graft material used with a resorbable collagen membrane for socket preservation. After four months, 32 bone biopsies were obtained for histological, histomorphometric, and statistical analysis. RESULTS: During the bone healing period, no infection signs were observed. Nineteen biopsies in group 1 and 13 biopsies in group 2 were detected. The histological analysis showed neither inflammatory nor infective reaction in both groups. Autologous grafts surrounded by new bone were observed in all samples and, at high magnification, partially resorbed dentin and enamel structures were detected. No gutta-percha or cement was identified. Small non-statistically significant differences between the groups, in total bone volume (BV), autologous graft residual, and vital bone percentage were detected. CONCLUSIONS: The study showed that the TT Transformer grafts were capable of producing new vital bone in socket preservation procedures. The histomorphometric results showed no statistical differences comparing whole and endodontically treated teeth in bone regeneration. Further studies will be carried out in order to understand the advantages of the autologous graft materials obtained from the tooth compared with the current biomaterials in bone regeneration treatments.
Department of Clinical and Experimental Medicine University of Foggia 71122 Foggia Italy
Private Practice 10121 Torino Italy
Private Practice 20100 Milan Italy
Private Practice 24068 Seriate Italy
Zobrazit více v PubMed
Weijden F.V.D., Dell’Acqua F., Slot D.E. Alveolar bone dimensional changes of post-extraction sockets in humans: A systematic review. J. Clin. Periodontol. 2009;36:1048–1058. doi: 10.1111/j.1600-051X.2009.01482.x. PubMed DOI
Schropp L. Bone healing and soft tissue contour changes following single-tooth extraction: A clinical and radiographic 12-month prospective study. J. Prosthet. Dent. 2004;91:313–323. PubMed
Araújo M.G., Silva C.O., Misawa M., Sukekava F. Alveolar socket healing: What can we learn? Periodontol. 2000. 2015;68:122–134. doi: 10.1111/prd.12082. PubMed DOI
Orgeas G.V., Clementini M., Risi V.D., Sanctis M.d. Surgical Techniques for Alveolar Socket Preservation: A Systematic Review. Int. J. Oral Maxillofac. Implants. 2013;28:1049–1061. doi: 10.11607/jomi.2670. PubMed DOI
Mastrangelo F., Quaresima R., Sebastianelli I., Dedola A., Kuperman S., Azzi L., Mortellaro C., Muttini A., Mijiritsky E. Poly D,L-Lactide-Co-Glycolic Acid Grafting Material in Sinus Lift. J. Craniofac. Surg. 2019;30:1073–1077. doi: 10.1097/SCS.0000000000005067. PubMed DOI
Mastrangelo F., Quaresima R., Grilli A., Tettamanti L., Vinci R., Sammartino G., Tetè S., Gherlone E. A comparison of bovine bone and hydroxyapatite scaffolds during initial bone regeneration: An in vitro evaluation. Implant Dent. 2013;22:613–622. doi: 10.1097/ID.0b013e3182a69858. PubMed DOI
Arx T.V., Hardt N., Wallkamm B. The TIME technique: A new technique for localized alveolar ridge augmentation prior to placement of dental implants. Int. J. Oral. Maxillofac. Implant. 1996;11:387–394. PubMed
Al-Moraissi E.A., Alkhutari A.S., Abotaleb B., Altairi N.H., Fabbro M.D. Do osteoconductive bone substitutes result in similar bone regeneration for maxillary sinus augmentation when compared to osteogenic and osteoinductive bone grafts? A systematic review and frequentist network meta-analysis. Int. J. Oral. Maxillofac. Surg. 2019;19:31163–31164. doi: 10.1016/j.ijom.2019.05.004. PubMed DOI
Sanz M., Dahlin C., Apatzidou D., Artzi Z., Bozic D., Calciolari E., De Bruyn H., Dommisch H., Donos N., Eickholz P., et al. Biomaterials and regenerative technologies used in bone regeneration in the craniomaxillofacial region: Consensus report of group 2 of the 15th European Workshop on Periodontology on Bone Regeneration. J. Clin. Periodontol. 2019;21:82–91. doi: 10.1111/jcpe.13123. PubMed DOI
Pang K.M., Um I.W., Kim Y.K., Woo J.M., Kim S.M., Lee J.H. Autogenous demineralized dentin matrix from extracted tooth for the augmentation of alveolar bone defect: A prospective randomized clinical trial in comparison with anorganic bovine bone. Clin. Oral Implant. Res. 2017;28:809–815. doi: 10.1111/clr.12885. PubMed DOI
Kim Y.K., Kim S.G., Yun P.Y., Yeo I.S., Jin S.C., Oh J.S., Kim H.J., Yu S.K., Lee S.Y., Kim J.S., et al. Autogenous teeth used for bone grafting: A comparison with traditional grafting materials. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2014;117:39–45. doi: 10.1016/j.oooo.2012.04.018. PubMed DOI
Kozuma W., Kon K., Kawakami S., Bobothike A., Iijima H., Shiota M., Kasugai S. Osteoconductive potential of a hydroxyapatite fiber material with magnesium: In vitro and in vivo studies. Dent. Mater. J. 2019;38:771–778. doi: 10.4012/dmj.2018-333. PubMed DOI
Bang G., Urist M.R. Bone induction in excavation chambers in matrix of decalcified dentin. Arch. Surg. 1967;94:781–789. doi: 10.1001/archsurg.1967.01330120035008. PubMed DOI
Gharpure A.S., Bhatavadekar N.B. Clinical Efficacy of Tooth-Bone Graft: A Systematic Review and Risk of Bias Analysis of Randomized Control Trials and Observational Studies. Implant Dent. 2018;27:119–134. doi: 10.1097/ID.0000000000000687. PubMed DOI
Bessho K., Tanaka N., Matsumoto J., Tagawa T., Murata M. Human dentin-matrix-derived bone morphogenetic protein. J. Dent. Res. 1991;70:171–175. doi: 10.1177/00220345910700030301. PubMed DOI
Rijal G., Shin H.I. Human tooth-derived biomaterial as a graft substitute for hard tissue regeneration. Regen. Med. 2017;12:263–273. doi: 10.2217/rme-2016-0147. PubMed DOI
Kim S.-Y., Kim Y.-K., Park Y.-H., Park J.-C., Ku J.-K., Um I.-W., Kim J.-Y. Evaluation of the Healing Potential of Demineralized Dentin Matrix Fixed with Recombinant Human Bone Morphogenetic Protein-2 in Bone Grafts. Materials. 2017;10:1049. doi: 10.3390/ma10091049. PubMed DOI PMC
Minamizato T., Koga T., Nakatani Y., Umebayashi M., Sumita Y., Ikeda T., Asahina I. Clinical application of autogenous partially demineralized dentin matrix prepared immediately after extraction for alveolar bone regeneration in implant dentistry: A pilot study. Int. J. Oral Maxillofac Surg. 2018;47:125–132. doi: 10.1016/j.ijom.2017.02.1279. PubMed DOI
Kim Y.K., Kim S.G., Oh J.S., Jin S.C., Son J.S., Kim S.Y., Lim S.Y. Analysis of the inorganic component of autogenous tooth bone graft material. J. Nanosci. Nanotechnol. 2011;11:7442–7445. doi: 10.1166/jnn.2011.4857. PubMed DOI
Mastrangelo F., Gastaldi G., Vinci R., Troiano G., Tettamanti L., Gherlone E., Muzio L.L. Immediate Postextractive Implants with and Without Bone Graft: 3-year Follow-up Results from a Multicenter Controlled Randomized Trial. Implant Dent. 2018;27:638–645. doi: 10.1097/ID.0000000000000816. PubMed DOI
Cardaropoli D., Nevins M., Schupbach P. New Bone Formation Using an Extracted Tooth as a Biomaterial: A Case Report with Histologic Evidence. Int. J. Periodontics Restor. Dent. 2019;39:157–163. doi: 10.11607/prd.4045. PubMed DOI
Grassi F.R., Pappalettere C., Comite M.D., Corsalini M., Mori G., Ballini A., Crincoli V., Pettini F., Rapone B., Boccaccio A. Effect of different irrigating solutions and endodontic sealers on bond strength of the dentin-post interface with and without defects. Int. J. Med. Sci. 2012;9:642–654. doi: 10.7150/ijms.4998. PubMed DOI PMC
Comite M.D., Crincoli V., Fatone L., Ballini A., Mori G., Rapone B., Boccaccio A., Pappalettere C., Grassi F.R., Favia A. Quantitative analysis of defects at the dentin-post space in endodontically treated teeth. Materials. 2015;8:3268–3283. doi: 10.3390/ma8063268. DOI
Minetti E., Berardini M., Trisi P. A new tooth processing apparatus allowing to obtain dentin grafts for bone augmentation: The tooth transformer. Open. Dent. J. 2019;13:6–14. doi: 10.2174/1874210601913010006. DOI
Minetti E., Palermo A., Ferrante F., Schmitz J.H., Ho H.K.L., Hann S.N.D., Giacometti E., Gambardella U., Contessi M., Celko M., et al. Autologous Tooth Graft after Endodontical Treated Used for Socket Preservation: A Multicenter Clinical Study. Appl. Sci. 2019;9:5396. doi: 10.3390/app9245396. DOI
Bono N., Tarsini P., Candiani G. Demineralized dentin and enamel matrices as suitable substrates for bone regeneration. J. Appl. Biomater. Funct. Mater. 2017;15:236–243. PubMed PMC
Implants Survival Rate in Regenerated Sites with Innovative Graft Biomaterials: 1 Year Follow-Up