Bovine Decellularized Amniotic Membrane: Extracellular Matrix as Scaffold for Mammalian Skin
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32151022
PubMed Central
PMC7182835
DOI
10.3390/polym12030590
PII: polym12030590
Knihovny.cz E-zdroje
- Klíčová slova
- biological scaffolding, bovine amniotic membrane, decellularization, extracellular matrix, tissue regeneration,
- Publikační typ
- časopisecké články MeSH
Decellularized membranes (DM) were obtained from bovine amniotic membranes (BAM) using four different decellularization protocols, based on physical, chemical, and mechanical treatment. The new material was used as a biological scaffold for in vitro skin cell culture. The DM were characterized using hematoxylin-eosin assay, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR-ATR), and differential scanning calorimetry (DSC). The in vitro cytotoxicity of DM was evaluated using MTT. The efficacy of decellularization process was assessed through DNA quantification and electrophoresis. All the used protocols showed a high effectiveness in terms of elimination of native cells, confirmed by DNA extraction and quantification, electrophoresis, and SEM, although protocol IV removes the cellular contents and preserve the native extracellular matrix (ECM) architecture which it can be considered as the most effective in terms of decellularization. FTIR-ATR and DSC on the other hand, revealed the effects of decellularization on the biochemical composition of the matrices. There was no cytotoxicity and the biological matrices obtained were a source of collagen for recellularization. The matrices of protocols I, II, and III were degraded at day 21 of cell culture, forming a gel. The biocompatibility in vitro was demonstrated; hence these matrices may be deemed as potential scaffold for epithelial tissue regeneration.
Zobrazit více v PubMed
Taylor D.A., Sampaio L.C., Ferdous Z., Gobin A.S., Taite L.J. Decellularized matrices in regenerative medicine. Acta Biomater. 2018;74:74–89. doi: 10.1016/j.actbio.2018.04.044. PubMed DOI
O’Brien F.J. Biomaterials & scaffolds for tissue engineering. Mater. Today. 2011;14:88–95.
Parmaksiz M., Elcin A.E., Elcin Y.M. Decellularization of bovine small intestinal submucosa and its use for the healing of a critical-sized full-thickness skin defect, alone and in combination with stem cells, in a small rodent model. J. Tissue Eng. Regen. Med. 2017;11:1754–1765. doi: 10.1002/term.2071. PubMed DOI
Greenwood J.E. Skin Tissue Engineering and Regenerative Medicine. Elsevier; Winston-Salem, NC, USA: 2016. Hybrid Biomaterials for Skin Tissue Engineering; pp. 185–210.
Downes S., Mishra A.A. Advanced Wound Repair Therapies. Elsevier Inc.; Cornwall, UK: 2011. Tissue-biomaterial interactions; pp. 174–185.
Naasani L.S., Damo Souza A.F., Rodrigues C., Vedovatto S., Azevedo J.G., Santin Bertoni A.P., Da Cruz Fernandes M., Buchner S., Wink M.R. Decellularized human amniotic membrane associated with adipose derived mesenchymal stromal cells as a bioscaffold: Physical, histological and molecular analysis. Biochem. Eng. J. 2019:107366. doi: 10.1016/j.bej.2019.107366. DOI
Ding J., Zhang J., Li J., Li D., Xiao C., Xiao H., Yang H., Zhuang X., Chen X. Electrospun polymer biomaterials. Prog. Polym. Sci. 2019;90:1–34. doi: 10.1016/j.progpolymsci.2019.01.002. DOI
Subramanian A., Krishnan U.M., Sethuraman S. Electrospinning for Tissue Regeneration. Elsevier; Cornwall, UK: 2011. Skin tissue regeneration; pp. 298–316.
Somuncu Ö.S., ßak Ballica B., Furkan Temiz A., Somuncu D. Experimental study In vitro artificial skin engineering by decellularized placental scaffold for secondary skin problems of meningomyelocele. J. Clin. Neurosci. 2019;59:291–297. doi: 10.1016/j.jocn.2018.10.044. PubMed DOI
Keane T.J., Swinehart I.T., Badylak S.F. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods. 2015;84:25–34. doi: 10.1016/j.ymeth.2015.03.005. PubMed DOI
Park S.M., Yang S., Rye S.-M., Choi S.W. Effect of pulsatile flow perfusion on decellularization. Biomed. Eng. Online. 2018;17:15. doi: 10.1186/s12938-018-0445-0. PubMed DOI PMC
Singh D., Singh D., Han S. 3D Printing of Scaffold for Cells Delivery: Advances in Skin Tissue Engineering. Polymers. 2016;8:19. doi: 10.3390/polym8010019. PubMed DOI PMC
Feng X., Li J., Zhang X., Liu T., Ding J., Chen X. Electrospun polymer micro/nanofibers as pharmaceutical repositories for healthcare. J. Control. Release. 2019;302:19–41. doi: 10.1016/j.jconrel.2019.03.020. PubMed DOI
Catalano E., Cochis A., Varoni E., Rimondini L., Azzimonti B. Tissue-engineered skin substitutes: An overview. J. Artif. Organs. 2013;16:397–403. doi: 10.1007/s10047-013-0734-0. PubMed DOI
Kim H.S., Sun X., Lee J.-H., Kim H.-W., Fu X., Leong K.W. Advanced drug delivery systems and artificial skin grafts for skin wound healing. Adv. Drug Deliv. Rev. 2018;146:209–239. doi: 10.1016/j.addr.2018.12.014. PubMed DOI
Simões D., Miguel S.P., Ribeiro M.P., Coutinho P., Mendonça A.G., Correia I.J. Recent advances on antimicrobial wound dressing: A review. Eur. J. Pharm. Biopharm. 2018;127:130–141. doi: 10.1016/j.ejpb.2018.02.022. PubMed DOI
Theocharis A.D., Skandalis S.S., Gialeli C., Karamanos N.K. Extracellular matrix structure. Adv. Drug Deliv. Rev. 2016;97:4–27. doi: 10.1016/j.addr.2015.11.001. PubMed DOI
Nyström A., Bernasconi R., Bornert O. Therapies for genetic extracellular matrix diseases of the skin. Matrix Biol. 2018;71–72:330–347. doi: 10.1016/j.matbio.2017.12.010. PubMed DOI
Iozzo R.V., Gubbiotti M.A. Extracellular matrix: The driving force of mammalian diseases. 2017, 71, 1–9. Matrix Biol. 2017;71:1–9. PubMed PMC
Waldeck H.M., Guerra A.D., Kao W.J. Extracellular Matrix: Inspired Biomaterials. Compr. Biomater. II. 2017;2:132–146. doi: 10.1016/B978-0-08-055294-1.00065-9. DOI
Chalikias G.K., Tziakas D.N. Biomarkers of the extracellular matrix and of collagen fragments. Clin. Chim. Acta. 2015;443:39–47. doi: 10.1016/j.cca.2014.06.028. PubMed DOI
Badylak S.F., Freytes D.O., Gilbert T.W. Reprint of: Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater. 2015;23:S17–S26. doi: 10.1016/j.actbio.2015.07.016. PubMed DOI
De Castro Brás L.E., Ramirez T.A., Deleon-Pennell K.Y., Chiao Y.A., Ma Y., Dai Q., Halade G.V., Hakala K., Weintraub S.T., Lindsey M.L. Texas 3-Step decellularization protocol: Looking at the cardiac extracellular matrix. J. Proteomics. 2013;86:43–52. doi: 10.1016/j.jprot.2013.05.004. PubMed DOI PMC
Vyas K., Vasconez H., Vyas K.S., Vasconez H.C. Wound Healing: Biologics, Skin Substitutes, Biomembranes and Scaffolds. Healthcare. 2014;2:356–400. doi: 10.3390/healthcare2030356. PubMed DOI PMC
Li A., Wei Y., Hung C., Vunjak-Novakovic G. Chondrogenic properties of collagen type XI, a component of cartilage extracellular matrix. Biomaterials. 2018;173:47–57. doi: 10.1016/j.biomaterials.2018.05.004. PubMed DOI
Kawecki M., Łabuś W., Klama-Baryla A., Kitala D., Kraut M., Glik J., Misiuga M., Nowak M., Bielecki T., Kasperczyk A. A review of decellurization methods caused by an urgent need for quality control of cell-free extracellular matrix’ scaffolds and their role in regenerative medicine. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018;106:909–923. doi: 10.1002/jbm.b.33865. PubMed DOI
Han S.-K. Innovations and Advances in Wound Healing. Springer; Berlin/Heidelberg, Germany: 2016.
Milan P.B., Kargozar S., Joghataie M.T., Samadikuchaksaraei A. Nanoengineered Biomaterials for Regenerative Medicine. Elsevier; Amsterdam, Netherlands: 2019. Nanoengineered biomaterials for skin regeneration; pp. 265–283.
Hany Hussein K., Park K.-M., Kang K.-S., Woo H.-M. Biocompatibility evaluation of tissue-engineered decellularized scaffolds for biomedical application. Mater. Sci. Eng.: C. 2016;67:766–788. doi: 10.1016/j.msec.2016.05.068. PubMed DOI
Dunckel A.P. Acellular bovine-derived matrix used on a traumatic crush injury of the hand: A case study. Ostomy Wound Manag. 2009;55:44–49. PubMed
Wurzer P., Keil H., Branski L.K., Parvizi D., Clayton R.P., Finnerty C.C., Herndon D.N., Kamolz L.P. The use of skin substitutes and burn careda survey. J. Surg. Res. 2016;201:293–298. doi: 10.1016/j.jss.2015.10.048. PubMed DOI
Scarritt M., Murdock M., Badylak S.F. Biologic Scaffolds Composed of Extracellular Matrix for Regenerative Medicine. Princ. Regen. Med. 2019:613–626. doi: 10.1016/B978-0-12-809880-6.00035-7. DOI
Barreto R.d.S.N., Romagnolli P., Mess A.M., Miglino M.A. Decellularized bovine cotyledons may serve as biological scaffolds with preserved vascular arrangement. J. Tissue Eng. Regen. Med. 2018;12:e1880–e1888. doi: 10.1002/term.2618. PubMed DOI
Nyame T.T., Chiang H.A., Orgill D.P. Clinical Applications of Skin Substitutes. Surg. Clin. NA. 2014;94:839–850. doi: 10.1016/j.suc.2014.05.013. PubMed DOI
Yamamoto T., Iwase H., King T.W., Hara H., Cooper D.K.C. Skin xenotransplantation: Historical review and clinical potential. Burns. 2018;44:1738–1749. doi: 10.1016/j.burns.2018.02.029. PubMed DOI PMC
Macleod T.M., Sarathchandra P., Williams G., Sanders R., Green C.J. Evaluation of a porcine origin acellular dermal matrix and small intestinal submucosa as dermal replacements in preventing secondary skin graft contraction. Burns. 2004;30:431–437. doi: 10.1016/j.burns.2004.01.018. PubMed DOI
Schallberger S.P., Stanley B.J., Hauptman J.G., Steficek B.A. Effect of Porcine Small Intestinal Submucosa on Acute Full-Thickness Wounds in Dogs. Vet. Surg. 2008;37:515–524. doi: 10.1111/j.1532-950X.2008.00398.x. PubMed DOI
Brown-Etris M., Milne C.T., Hodde J.P. An extracellular matrix graft (Oasis ® wound matrix) for treating full-thickness pressure ulcers: A randomized clinical trial. J. Tissue Viability. 2018;28:21–26. doi: 10.1016/j.jtv.2018.11.001. PubMed DOI
Middelkoop E., Sheridan R.L. Skin Substitutes and ‘the next level’. Total Burn Care. 2018:167–173. doi: 10.1016/B978-0-323-47661-4.00015-0. DOI
Chawla R., Seifalian A., Moiemen N.S., Butler P.E., Seifalian A.M. The Use of Skin Substitutes in the Treatment of Burns. Regen. Med. Appl. Organ Transplant. 2014:771–782. doi: 10.1016/B978-0-12-398523-1.00055-0. DOI
Haddad A.G., Giatsidis G., Orgill D.P., Halvorson E.G. Skin Substitutes and Bioscaffolds Temporary and Permanent Coverage. Clin. Plast. Surg. 2017;44:627–634. doi: 10.1016/j.cps.2017.02.019. PubMed DOI
Halim A., Khoo T., Shah J.Y. Biologic and synthetic skin substitutes: An overview. Indian J. Plast. Surg. 2010;43:23. doi: 10.4103/0970-0358.70712. PubMed DOI PMC
Aamodt J.M., Grainger D.W. Extracellular matrix-based biomaterial scaffolds and the host response. Biomaterials. 2016;86:68–82. doi: 10.1016/j.biomaterials.2016.02.003. PubMed DOI PMC
Saffle J.R. Closure of the Excised Burn Wound: Temporary Skin Substitutes. Clin. Plast. Surg. 2009;36:627–641. doi: 10.1016/j.cps.2009.05.005. PubMed DOI
Park M., Kim S., Kim I.S., Son D. Healing of a porcine burn wound dressed with human and bovine amniotic membranes. Wound Repair Regen. 2008;16:520–528. doi: 10.1111/j.1524-475X.2008.00399.x. PubMed DOI
Valladares M. Estudio de Tres Diferentes Métodos de Preparación y Conservación de la Membrana Amniótica Para Usos Oftalmológicos. Universidade de Santiago de Compostela; Sandriago de Compostela, Spain: 2008.
Francisco J.C., Correa Cunha R., Cardoso M.A., Baggio Simeoni R., Mogharbel B.F., Picharski G.L., Silva Moreira Dziedzic D., Guarita-Souza L.C., Carvalho K.A.T. Decellularized Amniotic Membrane Scaffold as a Pericardial Substitute: An In Vivo Study. Transplant. Proc. 2016;48:2845–2849. doi: 10.1016/j.transproceed.2016.07.026. PubMed DOI
Zhou Z., Long D., Hsu C.-C., Liu H., Chen L., Slavin B., Lin H., Li X., Tang J., Yiu S., et al. Nanofiber-reinforced decellularized amniotic membrane improves limbal stem cell transplantation in a rabbit model of corneal epithelial defect. Acta Biomater. 2019;97:310–320. doi: 10.1016/j.actbio.2019.08.027. PubMed DOI
da Anunciação A., Mess A., Orechio D., Aguiar B., Favaron P., Miglino M. Extracellular matrix in epitheliochorial, endotheliochorial and haemochorial placentation and its potential application for regenerative medicine. Reprod. Domest. Anim. 2017;52:3–15. doi: 10.1111/rda.12868. PubMed DOI
Min S., Yoon J.Y., Park S.Y., Kwon H.H., Suh D.H. Clinical effect of bovine amniotic membrane and hydrocolloid on wound by laser treatment: Prospective comparative randomized clinical trial. Wound Repair Regen. 2014;22:212–219. doi: 10.1111/wrr.12145. PubMed DOI
Leonel L., Miranda C., Coelho T., Ferreira G., Cañada R., Miglino M., Lobo S. Decellularization of placentas: Establishing a protocol. Braz. J. Med. Biol. Res. 2018;51 doi: 10.1590/1414-431x20176382. PubMed DOI PMC
Kang M., Choi S., Cho Lee A.-R. Effect of freeze dried bovine amniotic membrane extract on full thickness wound healing. Arch. Pharm. Res. 2013;36:472–478. doi: 10.1007/s12272-013-0079-5. PubMed DOI
Sanluis-Verdes A., Yebra-Pimentel Vilar M.T., García-Barreiro J.J., García-Camba M., Ibáñez J.S., Doménech N., Rendal-Vázquez M.E. Production of an acellular matrix from amniotic membrane for the synthesis of a human skin equivalent. Cell Tissue Bank. 2015;16:411–423. doi: 10.1007/s10561-014-9485-2. PubMed DOI
Favaron P., Carvalho R., Borghesi J., Anunciação A., Miglino M. The Amniotic Membrane: Development and Potential Applications - A Review. Reprod. Domest. Anim. 2015;50:881–892. doi: 10.1111/rda.12633. PubMed DOI
Milan P.B., Amini N., Joghataei M.T., Ebrahimi L., Amoupour M., Sarveazad A., Kargozar S., Mozafari M. Decellularized human amniotic membrane: From animal models to clinical trials. Methods. 2019 doi: 10.1016/j.ymeth.2019.07.018. PubMed DOI
Bruyneel A.A.N., Carr C.A. Ambiguity in the Presentation of Decellularized Tissue Composition: The Need for Standardized Approaches. Artif. Organs. 2017;41:778–784. doi: 10.1111/aor.12838. PubMed DOI PMC
Gilbert T.W., Freund J., Badylak S.F. Quantification of DNA in Biologic Scaffold Materials. J. Surg. Res. 2009;152:135–139. doi: 10.1016/j.jss.2008.02.013. PubMed DOI PMC
Crapo P.M., Gilbert T.W., Badylak S.F. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32:3233–3243. doi: 10.1016/j.biomaterials.2011.01.057. PubMed DOI PMC
Morales-Valencia M., Patiño-Vargas M., Correa-Londoño L., Restrepo-Múnera L. Evaluación del método químico-enzimático de descelularización para la obtención de matrices extracelulares de tráquea en el modelo porcino. Iatreia. 2016;29:144–156. doi: 10.17533/udea.iatreia.v29n2a04. DOI
Wu L.-C., Kuo Y.-J., Sun F.-W., Chen C.-H., Chiang C.-J., Weng P.-W., Tsuang Y.-H., Huang Y.-Y. Optimized decellularization protocol including α-Gal epitope reduction for fabrication of an acellular porcine annulus fibrosus scaffold. Cell Tissue Bank. 2017;18:383–396. doi: 10.1007/s10561-017-9619-4. PubMed DOI PMC
Gilpin A., Yang Y. Decellularization Strategies for Regenerative Medicine: From Processing Techniques to Applications. Biomed. Res. Int. 2017;2017:1–13. doi: 10.1155/2017/9831534. PubMed DOI PMC
Olgierd B., Sklarek A., Siwek P., Waluga E. Methods of Biomaterial-Aided Cell or Drug Delivery: Extracellular Matrix Proteins as Biomaterials. Stem Cells Biomater. Regen. Med. 2019:163–189. doi: 10.1016/B978-0-12-812258-7.00011-3. DOI
Vargas N., González C. Técnicas de Cultivos Celulares e Ingeniería de Tejidos. México: 2016.
Ganjibakhsh M., Mehraein F., Koruji M., Aflatoonian R., Farzaneh P. Three-dimensional decellularized amnion membrane scaffold as a novel tool for cancer research; cell behavior, drug resistance and cancer stem cell content. Mater. Sci. Eng. C. 2019;100:330–340. doi: 10.1016/j.msec.2019.02.090. PubMed DOI
Zvarova B., Uhl F.E., Uriarte J.J., Borg Z.D., Coffey A.L., Bonenfant N.R., Weiss D.J., Wagner D.E. Residual Detergent Detection Method for Nondestructive Cytocompatibility Evaluation of Decellularized Whole Lung Scaffolds. Tissue Eng. Part C Methods. 2016;22:418–428. doi: 10.1089/ten.tec.2015.0439. PubMed DOI PMC
Fernando I.P.S., Jayawardena T.U., Kim H.-S., Vaas A.P.J.P., De Silva H.I.C., Nanayakkara C.M., Abeytunga D.T.U., Lee W., Ahn G., Lee D.-S., et al. A keratinocyte and integrated fibroblast culture model for studying particulate matter-induced skin lesions and therapeutic intervention of fucosterol. Life Sci. 2019;233:116714. doi: 10.1016/j.lfs.2019.116714. PubMed DOI
Celik S.B., Dominici S.R., Filby B.W., Das A.A., Madden L.A., Paunov V.N. Fabrication of Human Keratinocyte Cell Clusters for Skin Graft Applications by Templating Water-in-Water Pickering Emulsions. Biomimetics. 2019;4:50. doi: 10.3390/biomimetics4030050. PubMed DOI PMC
Sapru S., Das S., Mandal M., Ghosh A.K., Kundu S.C. Nonmulberry silk protein sericin blend hydrogels for skin tissue regeneration - in vitro and in vivo. Int. J. Biol. Macromol. 2019;137:545–553. doi: 10.1016/j.ijbiomac.2019.06.121. PubMed DOI
Izadyari Aghmiuni A., Heidari Keshel S., Sefat F., Akbarzadeh Khiyavi A. Quince seed mucilage-based scaffold as a smart biological substrate to mimic mechanobiological behavior of skin and promote fibroblasts proliferation and h-ASCs differentiation into keratinocytes. Int. J. Biol. Macromol. 2019 doi: 10.1016/j.ijbiomac.2019.10.008. PubMed DOI
Duan H., Feng B., Guo X., Wang J., Zhao L., Zhou G., Liu W., Cao Y., Zhang W.J. Engineering of epidermis skin grafts using electrospun nanofibrous gelatin/polycaprolactone membranes. Int. J. Nanomed. 2013;8:2077–2084. PubMed PMC
Wolf M.T., Daly K.A., Brennan-Pierce E.P., Johnson S.A., Carruthers C.A., D’Amore A., Nagarkar S.P., Velankar S.S., Badylak S.F. A hydrogel derived from decellularized dermal extracellular matrix. Biomaterials. 2012;33:7028–7038. doi: 10.1016/j.biomaterials.2012.06.051. PubMed DOI PMC
Groeber F., Holeiter M., Hampel M., Hinderer S., Schenke-Layland K. Skin tissue engineering—In vivo and in vitro applications. Adv. Drug Deliv. Rev. 2011;63:352–366. doi: 10.1016/j.addr.2011.01.005. PubMed DOI
Wood F.M. Therapeutic Applications: Tissue Engineering of Skin. Princ. Regen. Med. 2019:1281–1295. doi: 10.1016/B978-0-12-809880-6.00073-4. DOI
Petreaca M., Martins-Green M. Principles of Regenerative Medicine. Elsevier; London, UK: 2019. Cell–Extracellular Matrix Interactions in Repair and Regeneration; pp. 15–35.
Leonel L.C.P.C., Miranda C.M.F.C., Coelho T.M., Ferreira G.A.S., Caãada R.R., Miglino M.A., Lobo S.E. Decellularization of placentas: Establishing a protocol. Braz. J. Med Biol. Res. 2017;51:e6382. doi: 10.1590/1414-431x20176382. PubMed DOI PMC
Kim H., Son D., Choi T.H., Jung S., Kwon S., Kim J., Han K. Evaluation of an Amniotic Membrane-Collagen Dermal Substitute in the Management of Full-Thickness Skin Defects in a Pig. Arch. Plast. Surg. 2013;40:11–18. doi: 10.5999/aps.2013.40.1.11. PubMed DOI PMC
Barraza-Garza G., de la Rosa L.A., Martínez-Martínez A., Castillo-Michel H., Cotte M., Alvarez-Parrilla E. La microespectroscopia de infrarrojo con t ransformada de Fourier (FTIRM) en el estudio de sistemas biológicos. Revista Latinoamericana de Química RLQ. 2013;41:125–148.
Bernal A., Balkova R., Kuritka I., Saha P. Preparation and characterisation of a new double-sided bio-artificial material prepared by casting of poly(vinyl alcohol) on collagen. Polym. Bull. 2013;70:431–453. doi: 10.1007/s00289-012-0802-2. DOI
Zhou Y., Chen C., Guo Z., Xie S., Hu J., Lu H. SR-FTIR as a tool for quantitative mapping of the content and distribution of extracellular matrix in decellularized book-shape bioscaffolds. BMC Musculoskelet. Disord. 2018;19:220. doi: 10.1186/s12891-018-2149-9. PubMed DOI PMC
Chi Ting Au-Yeung G., Sarig U., Sarig H., Bogireddi H., Bronshtein T., Baruch L., Spizzichino A., Bortman J., Freddy B.Y.C., Machluf M., et al. Restoring the biophysical properties of decellularized patches through recellularization. Biomater. Sci. 2017;5:1183–1194. doi: 10.1039/C7BM00208D. PubMed DOI
Shi D., Liu F., Yu Z., Chang B., Douglas Goff H., Zhong F. Effect of aging treatment on the physicochemical properties of collagen films. Food Hydrocoll. 2018;87:436–447. doi: 10.1016/j.foodhyd.2018.08.016. DOI
Li M., Han M., Sun Y., Hua Y., Chen G., Zhang L. Oligoarginine mediated collagen/chitosan gel composite for cutaneous wound healing. Int. J. Biol. Macromol. 2018;122:1120–1127. doi: 10.1016/j.ijbiomac.2018.09.061. PubMed DOI
Zouhair S., Aguiari P., Iop L., Vásquez-Rivera A., Filippi A., Romanato F., Korossis S., Wolkers W.F., Gerosa G. Preservation strategies for decellularized pericardial scaffolds for off-the-shelf availability. Acta Biomater. 2019;84:208–221. doi: 10.1016/j.actbio.2018.10.026. PubMed DOI
Badea E., Della Gatta G., Usacheva T. Effects of temperature and relative humidity on fibrillar collagen in parchment: A micro differential scanning calorimetry (micro DSC) study. Polym. Degrad. Stab. 2012;97:346–353. doi: 10.1016/j.polymdegradstab.2011.12.013. DOI
Latorre M.E., Velázquez D.E., Purslow P.P. Differences in the energetics of collagen denaturation in connective tissue from two muscles. Int. J. Biol. Macromol. 2018;113:1294–1301. doi: 10.1016/j.ijbiomac.2018.02.132. PubMed DOI
Schroepfer M., Meyer M. DSC investigation of bovine hide collagen at varying degrees of crosslinking and humidities. Int. J. Biol. Macromol. 2017;103:120–128. doi: 10.1016/j.ijbiomac.2017.04.124. PubMed DOI
Zhang Y., Snow T., Smith A.J., Holmes G., Prabakar S. A guide to high-efficiency chromium (III)-collagen cross-linking: Synchrotron SAXS and DSC study. Int. J. Biol. Macromol. 2019;126:123–129. doi: 10.1016/j.ijbiomac.2018.12.187. PubMed DOI
Rochdi A., Foucat L., Renou J.-P. NMR and DSC studies during thermal denaturation of collagen. Food Chem. 2000;69:295–299. doi: 10.1016/S0308-8146(99)00267-8. DOI
Bozec L., Odlyha M. Thermal denaturation studies of collagen by microthermal analysis and atomic force microscopy. Biophys. J. 2011;101:228–236. doi: 10.1016/j.bpj.2011.04.033. PubMed DOI PMC
Sarti B., Scandola M. Viscoelastic and thermal properties of collagen/poly(vinyl alcohol) blends. Biomaterials. 1995;16:785–792. doi: 10.1016/0142-9612(95)99641-X. PubMed DOI