Highly Rectifying Heterojunctions Formed by Annealed ZnO Nanorods on GaN Substrates

. 2020 Mar 11 ; 10 (3) : . [epub] 20200311

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32168923

Grantová podpora
17-00546S Grantová Agentura České Republiky
17-00355S Grantová Agentura České Republiky
1501318 Grantová Agentura, Univerzita Karlova

We study the effect of thermal annealing on the electrical properties of the nanoscale p-n heterojunctions based on single n-type ZnO nanorods on p-type GaN substrates. The ZnO nanorods are prepared by chemical bath deposition on both plain GaN substrates and on the substrates locally patterned by focused ion beam lithography. Electrical properties of single nanorod heterojunctions are measured with a nanoprobe in the vacuum chamber of a scanning electron microscope. The focused ion beam lithography provides a uniform nucleation of ZnO, which results in a uniform growth of ZnO nanorods. The specific configuration of the interface between the ZnO nanorods and GaN substrate created by the focused ion beam suppresses the surface leakage current and improves the current-voltage characteristics. Further improvement of the electrical characteristics is achieved by annealing of the structures in nitrogen, which limits the defect-mediated leakage current and increases the carrier injection efficiency.

Zobrazit více v PubMed

Ozgur U., Alivov Y.I., Liu C., Teke A., Reshchikov M.A., Dogan S., Avrutin V., Cho S.J., Morkoc H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005;98:41301. doi: 10.1063/1.1992666. DOI

Janotti A., Van de Walle C.G. Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 2009;72:126501. doi: 10.1088/0034-4885/72/12/126501. DOI

Look D.C., Claflin B., Alivov Y.I., Park S.J. The future of ZnO light emitters. Phys. Status Solidi (A) 2004;201:2203–2212. doi: 10.1002/pssa.200404803. DOI

Chen C.P., Ke M.Y., Liu C.C., Chang Y.J., Yang F.H., Huang J.J. Observation of 394 nm electroluminescence from low-temperature sputtered n-ZnO/SiO2 thin films on top of the p-GaN heterostructure. Appl. Phys. Lett. 2007;91:91107. doi: 10.1063/1.2777175. DOI

Belhaj M., Dridi C., Yatskiv R., Grym J. The improvement of UV photodetection based on polymer/ZnO nanorod heterojunctions. Org. Electron. 2020;77:105545. doi: 10.1016/j.orgel.2019.105545. DOI

Yatskiv R., Tiagulskyi S., Grym J., Vanis J., Basinova N., Horak P., Torrisi A., Ceccio G., Vacik J., Vrnata M. Optical and electrical characterization of CuO/ZnO heterojunctions. Thin Solid Film. 2020:693. doi: 10.1016/j.tsf.2019.137656. DOI

Gruber T., Kirchner C., Thonke K., Sauer R., Waag A. MOCVD growth of ZnO for optoelectronic applications. Phys. Status Solidi (A) 2002;192:166–170. doi: 10.1002/1521-396X(200207)192:1<166::AID-PSSA166>3.0.CO;2-G. DOI

Ye B.-U., Kim B.J., Song Y.H., Son J.H., Yu H.k., Kim M.H., Lee J.-L., Baik J.M. Enhancing Light Emission of Nanostructured Vertical Light-Emitting Diodes by Minimizing Total Internal Reflection. Adv. Funct. Mater. 2012;22:632–639. doi: 10.1002/adfm.201101987. DOI

Lupan O., Pauporte T., Viana B. Low-voltage UV-electroluminescence from ZnO-nanowire Array/p-GaN light-emitting diodes. Adv. Mater. 2010;22:3298–3302. doi: 10.1002/adma.201000611. PubMed DOI

Dong J.J., Zhang X.W., Yin Z.G., Wang J.X., Zhang S.G., Si F.T., Gao H.L., Liu X. Ultraviolet electroluminescence from ordered ZnO nanorod array/p-GaN light emitting diodes. Appl. Phys. Lett. 2012;100:171109. doi: 10.1063/1.4706259. DOI

Park S.H., Seo S.Y., Kim S.H., Han S.W. Surface roughness and strain effects on ZnO nanorod growth. Appl. Phys. Lett. 2006;88:251903. doi: 10.1063/1.2215631. DOI

Park W.I., Yi G.-C. Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN. Adv. Mater. 2004;16:87–90. doi: 10.1002/adma.200305729. DOI

Shi Z., Zhang Y., Cui X., Wu B., Zhuang S., Yang F., Yang X., Zhang B., Du G. Improvement of electroluminescence performance by integration of ZnO nanowires and single-crystalline films on ZnO/GaN heterojunction. Appl. Phys. Lett. 2014;104:131109. doi: 10.1063/1.4870517. DOI

Zhu G.Y., Xu C.X., Lin Y., Shi Z.L., Li J.T., Ding T., Tian Z.S., Chen G.F. Ultraviolet electroluminescence from horizontal ZnO microrods/GaN heterojunction light-emitting diode array. Appl. Phys. Lett. 2012;101:41110. doi: 10.1063/1.4739002. DOI

Vayssieres L. Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solution. Adv. Mater. 2003;15:464–466. doi: 10.1002/adma.200390108. DOI

Cole J.J., Wang X., Knuesel R.J., Jacobs H.O. Integration of ZnO Microcrystals with Tailored Dimensions Forming Light Emitting Diodes and UV Photovoltaic Cells. Nano Lett. 2008;8:1477–1481. doi: 10.1021/nl0804809. PubMed DOI

Jeong J., Choi J.E., Kim Y.-J., Hwang S., Kim S.K., Kim J.K., Jeong H.Y., Hong Y.J. Reverse-bias-driven dichromatic electroluminescence of n-ZnO wire arrays/p-GaN film heterojunction light-emitting diodes. Appl. Phys. Lett. 2016;109:101103. doi: 10.1063/1.4960586. DOI

Xu S., Xu C., Liu Y., Hu Y., Yang R., Yang Q., Ryou J.H., Kim H.J., Lochner Z., Choi S.L., et al. Ordered nanowire array blue/near-UV light emitting diodes. Adv. Mater. 2010;22:4749–4753. doi: 10.1002/adma.201002134. PubMed DOI

Quang L.H., Chua S.J., Ping Loh K., Fitzgerald E. The effect of post-annealing treatment on photoluminescence of ZnO nanorods prepared by hydrothermal synthesis. J. Cryst. Growth. 2006;287:157–161. doi: 10.1016/j.jcrysgro.2005.10.060. DOI

Liu S.-Y., Chen T., Jiang Y.-L., Ru G.-P., Qu X.-P. The effect of postannealing on the electrical properties of well-aligned n-ZnO nanorods/p-Si heterojunction. J. Appl. Phys. 2009;105:114504. doi: 10.1063/1.3137204. DOI

Kim D.C., Han W.S., Kong B.H., Cho H.K., Hong C.H. Fabrication of the hybrid ZnO LED structure grown on p-type GaN by metal organic chemical vapor deposition. Phys. B: Condens. Matter. 2007;401–402:386–390. doi: 10.1016/j.physb.2007.08.194. DOI

Park G.C., Hwang S.M., Lee S.M., Choi J.H., Song K.M., Kim H.Y., Kim H.S., Eum S.J., Jung S.B., Lim J.H., et al. Hydrothermally Grown In-doped ZnO Nanorods on p-GaN Films for Color-tunable Heterojunction Light-emitting-diodes. Sci. Rep. 2015;5:10410. doi: 10.1038/srep10410. PubMed DOI PMC

Ng A.M., Xi Y.Y., Hsu Y.F., Djurisic A.B., Chan W.K., Gwo S., Tam H.L., Cheah K.W., Fong P.W., Lui H.F., et al. GaN/ZnO nanorod light emitting diodes with different emission spectra. Nanotechnology. 2009;20:445201. doi: 10.1088/0957-4484/20/44/445201. PubMed DOI

Alvi N.H., Willander M., Nur O. The effect of the post-growth annealing on the electroluminescence properties of -ZnO nanorods/-GaN light emitting diodes. Superlattices Microstruct. 2010;47:754–761. doi: 10.1016/j.spmi.2010.03.002. DOI

Hatch S.M., Briscoe J., Sapelkin A., Gillin W.P., Gilchrist J.B., Ryan M.P., Heutz S., Dunn S. Influence of anneal atmosphere on ZnO-nanorod photoluminescent and morphological properties with self-powered photodetector performance. J. Appl. Phys. 2013;113:204501. doi: 10.1063/1.4805349. DOI

Prucnal S., Wu J., Berencén Y., Liedke M.O., Wagner A., Liu F., Wang M., Rebohle L., Zhou S., Cai H., et al. Engineering of optical and electrical properties of ZnO by non-equilibrium thermal processing: The role of zinc interstitials and zinc vacancies. J. Appl. Phys. 2017;122:35303. doi: 10.1063/1.4994796. DOI

Yatskiv R., Grym J. Luminescence properties of hydrothermally grown ZnO nanorods. Superlattices Microstruct. 2016;99:214–220. doi: 10.1016/j.spmi.2016.02.021. DOI

Zhang S.G., Zhang X.W., Yin Z.G., Wang J.X., Dong J.J., Wang Z.G., Qu S., Cui B., Wowchak A.M., Dabiran A.M., et al. Improvement of electroluminescent performance of n-ZnO/AlN/p-GaN light-emitting diodes by optimizing the AlN barrier layer. J. Appl. Phys. 2011;109:93708. doi: 10.1063/1.3590399. DOI

Zhang X.-M., Lu M.-Y., Zhang Y., Chen L.-J., Wang Z.L. Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film. Adv. Mater. 2009;21:2767–2770. doi: 10.1002/adma.200802686. DOI

Yan J.-T., Chen C.-H., Yen S.-F., Lee C.-T. Ultraviolet ZnO Nanorod/P-GaN-Heterostructured Light-Emitting Diodes. IEEE Photonics Technol. Lett. 2010;22:146–148. doi: 10.1109/LPT.2009.2037021. DOI

Tiagulskyi S., Yatskiv R., Faitova H., Kucerova S., Vanis J., Grym J. Electrical properties of nanoscale p-n heterojunctions formed between a single ZnO nanorod and GaN substrate. Mater. Sci. Semicond. Process. 2020;107:104808. doi: 10.1016/j.mssp.2019.104808. DOI

Lee H.-Y., Lee C.-T., Yan J.-T. Emission mechanisms of passivated single n-ZnO:In/i-ZnO/p-GaN-heterostructured nanorod light-emitting diodes. Appl. Phys. Lett. 2010;97:111111. doi: 10.1063/1.3490652. DOI

Lord A.M., Ramasse Q.M., Kepaptsoglou D.M., Evans J.E., Davies P.R., Ward M.B., Wilks S.P. Modifying the Interface Edge to Control the Electrical Transport Properties of Nanocontacts to Nanowires. Nano Lett. 2017;17:687–694. doi: 10.1021/acs.nanolett.6b03699. PubMed DOI

Talin A.A., Léonard F., Katzenmeyer A.M., Swartzentruber B.S., Picraux S.T., Toimil-Molares M.E., Cederberg J.G., Wang X., Hersee S.D., Rishinaramangalum A. Transport characterization in nanowires using an electrical nanoprobe. Semicond. Sci. Technol. 2010;25:24015. doi: 10.1088/0268-1242/25/2/024015. DOI

Zhao S., Salehzadeh O., Alagha S., Kavanagh K.L., Watkins S.P., Mi Z. Probing the electrical transport properties of intrinsic InN nanowires. Appl. Phys. Lett. 2013;102:73102. doi: 10.1063/1.4792699. DOI

Talin A.A., Leonard F., Swartzentruber B.S., Wang X., Hersee S.D. Unusually strong space-charge-limited current in thin wires. Phys. Rev. Lett. 2008;101:76802. doi: 10.1103/PhysRevLett.101.076802. PubMed DOI

Bie Y.Q., Liao Z.M., Zhang H.Z., Li G.R., Ye Y., Zhou Y.B., Xu J., Qin Z.X., Dai L., Yu D.P. Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions. Adv. Mater. 2011;23:649–653. doi: 10.1002/adma.201003156. PubMed DOI

Liao Z.M., Lv Z.K., Zhou Y.B., Xu J., Zhang J.M., Yu D.P. The effect of adsorbates on the space-charge-limited current in single ZnO nanowires. Nanotechnology. 2008;19:335204. doi: 10.1088/0957-4484/19/33/335204. PubMed DOI

Yatskiv R., Tiagulskyi S., Grym J., Cernohorsky O. Electrical and Optical Properties of Rectifying ZnO Homojunctions Fabricated by Wet Chemistry Methods. Phys. Status Solidi A-Appl. Mater. Sci. 2018;215 doi: 10.1002/pssa.201700592. DOI

Huh Y., Hong K.J., Shin K.S. Amorphization induced by focused ion beam milling in metallic and electronic materials. Microsc. Microanal. 2013;19(Suppl. S5):33–37. doi: 10.1017/S1431927613012282. PubMed DOI

Nam C.Y., Tham D., Fischer J.E. Disorder effects in focused-lon-beam-deposited pt contacts on GaN nanowires. Nano Lett. 2005;5:2029–2033. doi: 10.1021/nl0515697. PubMed DOI

Wildeson I.H., Ewoldt D.A., Colby R., Stach E.A., Sands T.D. Controlled Growth of Ordered Nanopore Arrays in GaN. Nano Lett. 2011;11:535–540. doi: 10.1021/nl103418q. PubMed DOI

Morin S.A., Jin S. Screw Dislocation-Driven Epitaxial Solution Growth of ZnO Nanowires Seeded by Dislocations in GaN Substrates. Nano Lett. 2010;10:3459–3463. doi: 10.1021/nl1015409. PubMed DOI

Besendörfer S., Meissner E., Tajalli A., Meneghini M., Freitas J.A., Jr., Derluyn J., Medjdoub F., Meneghesso G., Friedrich J., Erlbacher T. Vertical breakdown of GaN on Si due to V-pits. J. Appl. Phys. 2020;127:15701. doi: 10.1063/1.5129248. DOI

Sze S.M. Physics of Semiconductor Devices. 3rd ed. John Wiley and Sons; Hoboken, NJ, USA: 2007. p. 815.

Sui C., Lu Z., Xu T. Effects of annealing temperature on photoluminescence of ZnO nanorods hydrothermally grown on a ZnO:Al seed layer. Opt. Mater. 2013;35:2649–2653. doi: 10.1016/j.optmat.2013.08.002. DOI

Rose A. Space-Charge-Limited Currents in Solids. Phys. Rev. 1955;97:1538–1544. doi: 10.1103/PhysRev.97.1538. DOI

Riben A.R., Feucht D.L. Electrical transport in nGe-pGaAs heterojunctions. Int. J. Electron. 1966;20:583. doi: 10.1080/00207216608937891. DOI

Sieber B., Liu H., Piret G., Laureyns J., Roussel P., Gelloz B., Szunerits S., Boukherroub R. Synthesis and Luminescence Properties of (N-Doped) ZnO Nanostructures from a Dimethylformamide Aqueous Solution. J. Phys. Chem. C. 2009;113:13643–13650. doi: 10.1021/jp903504w. DOI

Look D.C., Farlow G.C., Reunchan P., Limpijumnong S., Zhang S.B., Nordlund K. Evidence for native-defect donors in n-type ZnO. Phys. Rev. Lett. 2005;95:225502. doi: 10.1103/PhysRevLett.95.225502. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace