Highly Rectifying Heterojunctions Formed by Annealed ZnO Nanorods on GaN Substrates
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-00546S
Grantová Agentura České Republiky
17-00355S
Grantová Agentura České Republiky
1501318
Grantová Agentura, Univerzita Karlova
PubMed
32168923
PubMed Central
PMC7153476
DOI
10.3390/nano10030508
PII: nano10030508
Knihovny.cz E-zdroje
- Klíčová slova
- ZnO nanorods, annealing, chemical bath deposition, current-voltage characteristics, focused ion beam patterning, nanoprobe in the scanning electron microscope, nanoscale heterojunctions,
- Publikační typ
- časopisecké články MeSH
We study the effect of thermal annealing on the electrical properties of the nanoscale p-n heterojunctions based on single n-type ZnO nanorods on p-type GaN substrates. The ZnO nanorods are prepared by chemical bath deposition on both plain GaN substrates and on the substrates locally patterned by focused ion beam lithography. Electrical properties of single nanorod heterojunctions are measured with a nanoprobe in the vacuum chamber of a scanning electron microscope. The focused ion beam lithography provides a uniform nucleation of ZnO, which results in a uniform growth of ZnO nanorods. The specific configuration of the interface between the ZnO nanorods and GaN substrate created by the focused ion beam suppresses the surface leakage current and improves the current-voltage characteristics. Further improvement of the electrical characteristics is achieved by annealing of the structures in nitrogen, which limits the defect-mediated leakage current and increases the carrier injection efficiency.
Zobrazit více v PubMed
Ozgur U., Alivov Y.I., Liu C., Teke A., Reshchikov M.A., Dogan S., Avrutin V., Cho S.J., Morkoc H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005;98:41301. doi: 10.1063/1.1992666. DOI
Janotti A., Van de Walle C.G. Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 2009;72:126501. doi: 10.1088/0034-4885/72/12/126501. DOI
Look D.C., Claflin B., Alivov Y.I., Park S.J. The future of ZnO light emitters. Phys. Status Solidi (A) 2004;201:2203–2212. doi: 10.1002/pssa.200404803. DOI
Chen C.P., Ke M.Y., Liu C.C., Chang Y.J., Yang F.H., Huang J.J. Observation of 394 nm electroluminescence from low-temperature sputtered n-ZnO/SiO2 thin films on top of the p-GaN heterostructure. Appl. Phys. Lett. 2007;91:91107. doi: 10.1063/1.2777175. DOI
Belhaj M., Dridi C., Yatskiv R., Grym J. The improvement of UV photodetection based on polymer/ZnO nanorod heterojunctions. Org. Electron. 2020;77:105545. doi: 10.1016/j.orgel.2019.105545. DOI
Yatskiv R., Tiagulskyi S., Grym J., Vanis J., Basinova N., Horak P., Torrisi A., Ceccio G., Vacik J., Vrnata M. Optical and electrical characterization of CuO/ZnO heterojunctions. Thin Solid Film. 2020:693. doi: 10.1016/j.tsf.2019.137656. DOI
Gruber T., Kirchner C., Thonke K., Sauer R., Waag A. MOCVD growth of ZnO for optoelectronic applications. Phys. Status Solidi (A) 2002;192:166–170. doi: 10.1002/1521-396X(200207)192:1<166::AID-PSSA166>3.0.CO;2-G. DOI
Ye B.-U., Kim B.J., Song Y.H., Son J.H., Yu H.k., Kim M.H., Lee J.-L., Baik J.M. Enhancing Light Emission of Nanostructured Vertical Light-Emitting Diodes by Minimizing Total Internal Reflection. Adv. Funct. Mater. 2012;22:632–639. doi: 10.1002/adfm.201101987. DOI
Lupan O., Pauporte T., Viana B. Low-voltage UV-electroluminescence from ZnO-nanowire Array/p-GaN light-emitting diodes. Adv. Mater. 2010;22:3298–3302. doi: 10.1002/adma.201000611. PubMed DOI
Dong J.J., Zhang X.W., Yin Z.G., Wang J.X., Zhang S.G., Si F.T., Gao H.L., Liu X. Ultraviolet electroluminescence from ordered ZnO nanorod array/p-GaN light emitting diodes. Appl. Phys. Lett. 2012;100:171109. doi: 10.1063/1.4706259. DOI
Park S.H., Seo S.Y., Kim S.H., Han S.W. Surface roughness and strain effects on ZnO nanorod growth. Appl. Phys. Lett. 2006;88:251903. doi: 10.1063/1.2215631. DOI
Park W.I., Yi G.-C. Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN. Adv. Mater. 2004;16:87–90. doi: 10.1002/adma.200305729. DOI
Shi Z., Zhang Y., Cui X., Wu B., Zhuang S., Yang F., Yang X., Zhang B., Du G. Improvement of electroluminescence performance by integration of ZnO nanowires and single-crystalline films on ZnO/GaN heterojunction. Appl. Phys. Lett. 2014;104:131109. doi: 10.1063/1.4870517. DOI
Zhu G.Y., Xu C.X., Lin Y., Shi Z.L., Li J.T., Ding T., Tian Z.S., Chen G.F. Ultraviolet electroluminescence from horizontal ZnO microrods/GaN heterojunction light-emitting diode array. Appl. Phys. Lett. 2012;101:41110. doi: 10.1063/1.4739002. DOI
Vayssieres L. Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solution. Adv. Mater. 2003;15:464–466. doi: 10.1002/adma.200390108. DOI
Cole J.J., Wang X., Knuesel R.J., Jacobs H.O. Integration of ZnO Microcrystals with Tailored Dimensions Forming Light Emitting Diodes and UV Photovoltaic Cells. Nano Lett. 2008;8:1477–1481. doi: 10.1021/nl0804809. PubMed DOI
Jeong J., Choi J.E., Kim Y.-J., Hwang S., Kim S.K., Kim J.K., Jeong H.Y., Hong Y.J. Reverse-bias-driven dichromatic electroluminescence of n-ZnO wire arrays/p-GaN film heterojunction light-emitting diodes. Appl. Phys. Lett. 2016;109:101103. doi: 10.1063/1.4960586. DOI
Xu S., Xu C., Liu Y., Hu Y., Yang R., Yang Q., Ryou J.H., Kim H.J., Lochner Z., Choi S.L., et al. Ordered nanowire array blue/near-UV light emitting diodes. Adv. Mater. 2010;22:4749–4753. doi: 10.1002/adma.201002134. PubMed DOI
Quang L.H., Chua S.J., Ping Loh K., Fitzgerald E. The effect of post-annealing treatment on photoluminescence of ZnO nanorods prepared by hydrothermal synthesis. J. Cryst. Growth. 2006;287:157–161. doi: 10.1016/j.jcrysgro.2005.10.060. DOI
Liu S.-Y., Chen T., Jiang Y.-L., Ru G.-P., Qu X.-P. The effect of postannealing on the electrical properties of well-aligned n-ZnO nanorods/p-Si heterojunction. J. Appl. Phys. 2009;105:114504. doi: 10.1063/1.3137204. DOI
Kim D.C., Han W.S., Kong B.H., Cho H.K., Hong C.H. Fabrication of the hybrid ZnO LED structure grown on p-type GaN by metal organic chemical vapor deposition. Phys. B: Condens. Matter. 2007;401–402:386–390. doi: 10.1016/j.physb.2007.08.194. DOI
Park G.C., Hwang S.M., Lee S.M., Choi J.H., Song K.M., Kim H.Y., Kim H.S., Eum S.J., Jung S.B., Lim J.H., et al. Hydrothermally Grown In-doped ZnO Nanorods on p-GaN Films for Color-tunable Heterojunction Light-emitting-diodes. Sci. Rep. 2015;5:10410. doi: 10.1038/srep10410. PubMed DOI PMC
Ng A.M., Xi Y.Y., Hsu Y.F., Djurisic A.B., Chan W.K., Gwo S., Tam H.L., Cheah K.W., Fong P.W., Lui H.F., et al. GaN/ZnO nanorod light emitting diodes with different emission spectra. Nanotechnology. 2009;20:445201. doi: 10.1088/0957-4484/20/44/445201. PubMed DOI
Alvi N.H., Willander M., Nur O. The effect of the post-growth annealing on the electroluminescence properties of -ZnO nanorods/-GaN light emitting diodes. Superlattices Microstruct. 2010;47:754–761. doi: 10.1016/j.spmi.2010.03.002. DOI
Hatch S.M., Briscoe J., Sapelkin A., Gillin W.P., Gilchrist J.B., Ryan M.P., Heutz S., Dunn S. Influence of anneal atmosphere on ZnO-nanorod photoluminescent and morphological properties with self-powered photodetector performance. J. Appl. Phys. 2013;113:204501. doi: 10.1063/1.4805349. DOI
Prucnal S., Wu J., Berencén Y., Liedke M.O., Wagner A., Liu F., Wang M., Rebohle L., Zhou S., Cai H., et al. Engineering of optical and electrical properties of ZnO by non-equilibrium thermal processing: The role of zinc interstitials and zinc vacancies. J. Appl. Phys. 2017;122:35303. doi: 10.1063/1.4994796. DOI
Yatskiv R., Grym J. Luminescence properties of hydrothermally grown ZnO nanorods. Superlattices Microstruct. 2016;99:214–220. doi: 10.1016/j.spmi.2016.02.021. DOI
Zhang S.G., Zhang X.W., Yin Z.G., Wang J.X., Dong J.J., Wang Z.G., Qu S., Cui B., Wowchak A.M., Dabiran A.M., et al. Improvement of electroluminescent performance of n-ZnO/AlN/p-GaN light-emitting diodes by optimizing the AlN barrier layer. J. Appl. Phys. 2011;109:93708. doi: 10.1063/1.3590399. DOI
Zhang X.-M., Lu M.-Y., Zhang Y., Chen L.-J., Wang Z.L. Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film. Adv. Mater. 2009;21:2767–2770. doi: 10.1002/adma.200802686. DOI
Yan J.-T., Chen C.-H., Yen S.-F., Lee C.-T. Ultraviolet ZnO Nanorod/P-GaN-Heterostructured Light-Emitting Diodes. IEEE Photonics Technol. Lett. 2010;22:146–148. doi: 10.1109/LPT.2009.2037021. DOI
Tiagulskyi S., Yatskiv R., Faitova H., Kucerova S., Vanis J., Grym J. Electrical properties of nanoscale p-n heterojunctions formed between a single ZnO nanorod and GaN substrate. Mater. Sci. Semicond. Process. 2020;107:104808. doi: 10.1016/j.mssp.2019.104808. DOI
Lee H.-Y., Lee C.-T., Yan J.-T. Emission mechanisms of passivated single n-ZnO:In/i-ZnO/p-GaN-heterostructured nanorod light-emitting diodes. Appl. Phys. Lett. 2010;97:111111. doi: 10.1063/1.3490652. DOI
Lord A.M., Ramasse Q.M., Kepaptsoglou D.M., Evans J.E., Davies P.R., Ward M.B., Wilks S.P. Modifying the Interface Edge to Control the Electrical Transport Properties of Nanocontacts to Nanowires. Nano Lett. 2017;17:687–694. doi: 10.1021/acs.nanolett.6b03699. PubMed DOI
Talin A.A., Léonard F., Katzenmeyer A.M., Swartzentruber B.S., Picraux S.T., Toimil-Molares M.E., Cederberg J.G., Wang X., Hersee S.D., Rishinaramangalum A. Transport characterization in nanowires using an electrical nanoprobe. Semicond. Sci. Technol. 2010;25:24015. doi: 10.1088/0268-1242/25/2/024015. DOI
Zhao S., Salehzadeh O., Alagha S., Kavanagh K.L., Watkins S.P., Mi Z. Probing the electrical transport properties of intrinsic InN nanowires. Appl. Phys. Lett. 2013;102:73102. doi: 10.1063/1.4792699. DOI
Talin A.A., Leonard F., Swartzentruber B.S., Wang X., Hersee S.D. Unusually strong space-charge-limited current in thin wires. Phys. Rev. Lett. 2008;101:76802. doi: 10.1103/PhysRevLett.101.076802. PubMed DOI
Bie Y.Q., Liao Z.M., Zhang H.Z., Li G.R., Ye Y., Zhou Y.B., Xu J., Qin Z.X., Dai L., Yu D.P. Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions. Adv. Mater. 2011;23:649–653. doi: 10.1002/adma.201003156. PubMed DOI
Liao Z.M., Lv Z.K., Zhou Y.B., Xu J., Zhang J.M., Yu D.P. The effect of adsorbates on the space-charge-limited current in single ZnO nanowires. Nanotechnology. 2008;19:335204. doi: 10.1088/0957-4484/19/33/335204. PubMed DOI
Yatskiv R., Tiagulskyi S., Grym J., Cernohorsky O. Electrical and Optical Properties of Rectifying ZnO Homojunctions Fabricated by Wet Chemistry Methods. Phys. Status Solidi A-Appl. Mater. Sci. 2018;215 doi: 10.1002/pssa.201700592. DOI
Huh Y., Hong K.J., Shin K.S. Amorphization induced by focused ion beam milling in metallic and electronic materials. Microsc. Microanal. 2013;19(Suppl. S5):33–37. doi: 10.1017/S1431927613012282. PubMed DOI
Nam C.Y., Tham D., Fischer J.E. Disorder effects in focused-lon-beam-deposited pt contacts on GaN nanowires. Nano Lett. 2005;5:2029–2033. doi: 10.1021/nl0515697. PubMed DOI
Wildeson I.H., Ewoldt D.A., Colby R., Stach E.A., Sands T.D. Controlled Growth of Ordered Nanopore Arrays in GaN. Nano Lett. 2011;11:535–540. doi: 10.1021/nl103418q. PubMed DOI
Morin S.A., Jin S. Screw Dislocation-Driven Epitaxial Solution Growth of ZnO Nanowires Seeded by Dislocations in GaN Substrates. Nano Lett. 2010;10:3459–3463. doi: 10.1021/nl1015409. PubMed DOI
Besendörfer S., Meissner E., Tajalli A., Meneghini M., Freitas J.A., Jr., Derluyn J., Medjdoub F., Meneghesso G., Friedrich J., Erlbacher T. Vertical breakdown of GaN on Si due to V-pits. J. Appl. Phys. 2020;127:15701. doi: 10.1063/1.5129248. DOI
Sze S.M. Physics of Semiconductor Devices. 3rd ed. John Wiley and Sons; Hoboken, NJ, USA: 2007. p. 815.
Sui C., Lu Z., Xu T. Effects of annealing temperature on photoluminescence of ZnO nanorods hydrothermally grown on a ZnO:Al seed layer. Opt. Mater. 2013;35:2649–2653. doi: 10.1016/j.optmat.2013.08.002. DOI
Rose A. Space-Charge-Limited Currents in Solids. Phys. Rev. 1955;97:1538–1544. doi: 10.1103/PhysRev.97.1538. DOI
Riben A.R., Feucht D.L. Electrical transport in nGe-pGaAs heterojunctions. Int. J. Electron. 1966;20:583. doi: 10.1080/00207216608937891. DOI
Sieber B., Liu H., Piret G., Laureyns J., Roussel P., Gelloz B., Szunerits S., Boukherroub R. Synthesis and Luminescence Properties of (N-Doped) ZnO Nanostructures from a Dimethylformamide Aqueous Solution. J. Phys. Chem. C. 2009;113:13643–13650. doi: 10.1021/jp903504w. DOI
Look D.C., Farlow G.C., Reunchan P., Limpijumnong S., Zhang S.B., Nordlund K. Evidence for native-defect donors in n-type ZnO. Phys. Rev. Lett. 2005;95:225502. doi: 10.1103/PhysRevLett.95.225502. PubMed DOI