Yarrowia lipolytica Adhesion and Immobilization onto Residual Plastics
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FCT Ref. UID/CTM/50011/2019
Centro de Investigação em Materiais Cerâmicos e Compósitos
CAPES/GRICES 102/03
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
PubMed
32178341
PubMed Central
PMC7182813
DOI
10.3390/polym12030649
PII: polym12030649
Knihovny.cz E-zdroje
- Klíčová slova
- Yarrowia lipolytica, adhesion, immobilization, polymer surfaces, recycling,
- Publikační typ
- časopisecké články MeSH
Research in cell adhesion has important implications in various areas, such as food processing, medicine, environmental engineering, biotechnological processes. Cell surface characterization and immobilization of microorganisms on solid surfaces can be performed by promoting cell adhesion, in a relatively simple, inexpensive, and quick manner. The adhesion of Yarrowia lipolytica IMUFRJ 50682 to different surfaces, especially potential residual plastics (polystyrene, poly(ethylene terephthalate), and poly(tetrafluoroethylene)), and its use as an immobilized biocatalyst were tested. Y. lipolytica IMUFRJ 50682 presented high adhesion to different surfaces such as poly(tetrafluoroethylene) (Teflon), polystyrene, and glass, independent of pH, and low adhesion to poly(ethylene terephthalate) (PET). The adhesion of the cells to polystyrene was probably due to hydrophobic interactions involving proteins or protein complexes. The adhesion of the cells to Teflon might be the result not only of hydrophobic interactions but also of acid-basic forces. Additionally, the present work shows that Y. lipolytica cell extracts previously treated by ultrasound waves (cell debris) maintained their enzymatic activity (lipase) and could be attached to polystyrene and PET and used successfully as immobilized biocatalysts in hydrolysis reactions.
Zobrazit více v PubMed
Chiba S., Saito H., Fletcher R., Yogi T., Kayo M., Miyagi S., Ogido M., Fujikura K. Human footprint in the abyss: 30 year records of deep-sea plastic debris. Mar. Policy. 2018;96:204–212. doi: 10.1016/j.marpol.2018.03.022. DOI
Yoshida S., Hiraga K., Takehana T., Taniguchi I., Yamaji H., Maeda Y., Toyohara K., Miyamoto K., Kimura Y., Oda K. A bacterium that degrades and assimilates poly (ethylene terephthalate) Science. 2016;351:1196–1199. doi: 10.1126/science.aad6359. PubMed DOI
Austin H.P., Allen M.D., Donohoe B.S., Rorrer N.A., Kearns F.L., Silveira R.L., Pollard B.C., Dominick G., Duman R., El Omari K., et al. Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc. Natl. Acad. Sci. USA. 2018;115:E4350–E4357. doi: 10.1073/pnas.1718804115. PubMed DOI PMC
Berlowska J., Kregiel D., Ambroziak W. Enhancing adhesion of yeast brewery strains to chamotte carriers through aminosilane surface modification. World J. Microbiol. Biotechnol. 2013;29:1307–1316. doi: 10.1007/s11274-013-1294-4. PubMed DOI
Adamczak M., Bednarski W. Enhanced activity of intracellular lipases from Rhizomucor miehei and Yarrowia lipolytica by immobilization on biomass support particles. Process Biochem. 2004;39:1347–1361. doi: 10.1016/S0032-9592(03)00266-8. DOI
Ban K., Kaieda M., Matsumoto T., Kondo A., Fukuda H. Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles. Biochem. Eng. J. 2001;8:39–43. doi: 10.1016/S1369-703X(00)00133-9. PubMed DOI
Lehocký M., Amaral P.F.F., Sťahel P., Coelho M.A.Z., Barros-Timmons A.M., Coutinho J.A.P. Deposition of Yarrowia lipolytica on plasma prepared teflonlike thin films. Surf. Eng. 2008;24:23–27. doi: 10.1179/174329408X271444. DOI
Lehocký M., Amaral P.F.F., Sťahel P., Coelho M.A.Z., Barros-Timmons A.M., Coutinho J.A.P. Preparation and characterization of organosilicon thin films for selective adhesion of Yarrowia lipolytica yeast cells. J. Chem. Technol. Biotechnol. 2007;82:360–366. doi: 10.1002/jctb.1677. DOI
Dufrêne Y.F. Sticky microbes: Forces in microbial cell adhesion. Trends Microbiol. 2015;23:376–382. doi: 10.1016/j.tim.2015.01.011. PubMed DOI
Hermansson M. The DLVO theory in microbial adhesion. Colloids Surf. B. 1999;14:105–119. doi: 10.1016/S0927-7765(99)00029-6. DOI
Rijnaarts H.H.M., Norde W., Bouwer E.J., Lyklema J., Zehnder A.J.B. Reversibility and mechanism of bacterial adhesion. Colloids Surf. B. 1995;4:5–22. doi: 10.1016/0927-7765(94)01146-V. DOI
Barth G., Gaillardin C. Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol. Rev. 1997;19:219–237. doi: 10.1111/j.1574-6976.1997.tb00299.x. PubMed DOI
Fickers P., Fudalej F., Nicaud J.M., Destain J., Thonart P. Selection of new over-producing derivatives for the improvement of extracellular lipase production by the non-conventional yeast Yarrowia lipolytica. J. Biotech. 2005;115:379–386. doi: 10.1016/j.jbiotec.2004.09.014. PubMed DOI
Amaral P.F.F., Lehocky M., Barros-Timmons A.M.V., Rocha-Leão M.H.M., Coelho M.A.Z., Coutinho J.A.P. Cell surface characterization of Yarrowia lipolytica IMUFRJ 50682. Yeast. 2006;23:867–877. doi: 10.1002/yea.1405. PubMed DOI
Ota Y., Gomi K., Kato S., Sugiura T., Minoda Y. Purification and some properties of cell-bound lipase from Saccharomycopsis lipolytica. Agric. Biol. Chem. 1982;46:2885–2893. doi: 10.1271/bbb1961.46.2885. DOI
Nunes P., Martins A.B., Brigida A.I., Miguez Da Rocha Leao M.H.M., Amaral P. Intracellular lipase production by Yarrowia lipolytica using different carbon sources. Chem. Eng. Trans. 2014;38:421–426.
Fraga J.L., Penha A.C.B., Pereira A.S., Silva K.A., Akil E., Torres A.G., Amaral P.F.F. Use of Yarrowia lipolytica Lipase Immobilized in Cell Debris for the Production of Lipolyzed Milk Fat (LMF) Int. J. Mol. Sci. 2018;19:3413. doi: 10.3390/ijms19113413. PubMed DOI PMC
López-García J., Bílek F., Lehocký M., Junkar I., Mozetič M., Sowe M. Enhanced printability of polyethylene through air plasma treatment. Vacuum. 2013;95:43–49. doi: 10.1016/j.vacuum.2013.02.008. DOI
Haegler A.N., Mendonça-Haegler L.C. Yeast from marine and estuarine waters with different levels of pollution in the State of Rio de Janeiro, Brazil. Appl. Environ. Microbiol. 1981;41:173–178. doi: 10.1128/AEM.41.1.173-178.1981. PubMed DOI PMC
Rosenberg M. Bacterial Adherence to Polystyrene: A Replica Method of Screening for Bacterial Hydrophobicity. Appl. Environ. Microbiol. 1981;42:375–377. doi: 10.1128/AEM.42.2.375-377.1981. PubMed DOI PMC
Freire M.G., Dias A.M.A., Coelho M.A.Z., Coutinho J.A.P., Marrucho I.M. Aging mechanisms of perfluorocarbon emulsions using image analysis. J. Colloid Interface Sci. 2005;286:224–232. doi: 10.1016/j.jcis.2004.12.036. PubMed DOI
Tae-Hyun K., OH Y.S., Kim S.J. The Possible Involvement of the Cell Surface in Alinphatic Hydrocarbon Utilization by an Oil-Degrading Yeast, Yarrowia lipolytica 180. J. Microbiol. Biotechnol. 2000;10:333–337.
van Oss C.J., Chaudhury M.K., Good R.J. Monopolar surfaces. Adv. Coll. Int. Sci. 1987;28:35–64. doi: 10.1016/0001-8686(87)80008-8. PubMed DOI
van Oss C.J. Hydrophobicity of biosurfaces-origin, quantitative determination and interaction energies. Coll. Surf. B. 1995;5:91–110. doi: 10.1016/0927-7765(95)01217-7. DOI
van der Mei H.C., Bos R., Busscher H.J. A reference guide to microbial cell surface hydrophobicity based on contact angles. Coll. Surf. B. 1998;11:213–221. doi: 10.1016/S0927-7765(98)00037-X. DOI
Rijnaarts H.H.M., Norde W., Lyklema J., Zehnder A.J.B. The isoelectric point of bacteria as an indicator for the presence of cell surface polymers that inhibit adhesion. Coll. Surf. B. 1995;4:191–197. doi: 10.1016/0927-7765(94)01164-Z. DOI
Aguedo M., Waché Y., Belin J.M., Teixeira J.A. Surface properties of Yarrowia lipolytica and their relevance to γ-decalactone formation from methyl ricinoleate. Biotechnol. Lett. 2005;27:417–422. doi: 10.1007/s10529-005-1776-z. PubMed DOI