Molecular Characterization of PGC-1β (PPAR Gamma Coactivator 1β) and its Roles in Mitochondrial Biogenesis in Blunt Snout Bream (Megalobrama amblycephala)
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
B17162
Outstanding Young Scientific Research Talents Program of Fujian province
31801969
National Nature Science Foundation of China
LM2018099
Ministry of Education, Youth and Sports of the Czech Republic, project CENAKVA
QK1710310
Ministry of Agriculture of the Czech Republic, project NAZV
PubMed
32178369
PubMed Central
PMC7139572
DOI
10.3390/ijms21061935
PII: ijms21061935
Knihovny.cz E-resources
- Keywords
- NRF-1, PPAR, fish model, mitochondrial biogenesis,
- MeSH
- Amino Acids MeSH
- Organelle Biogenesis MeSH
- Cyprinidae genetics physiology MeSH
- DNA-Binding Proteins genetics MeSH
- Phylogeny MeSH
- Hepatocytes physiology MeSH
- Liver MeSH
- DNA, Mitochondrial genetics MeSH
- Mitochondrial Proteins genetics MeSH
- Mitochondria genetics physiology MeSH
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha genetics MeSH
- Signal Transduction genetics MeSH
- Transcription Factors genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Amino Acids MeSH
- DNA-Binding Proteins MeSH
- mitochondrial transcription factor A MeSH Browser
- DNA, Mitochondrial MeSH
- Mitochondrial Proteins MeSH
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha MeSH
- Transcription Factors MeSH
This study aimed at achieving the molecular characterization of peroxisome proliferator-activated receptor-gamma coactivator 1β (PGC-1β) and exploring its modulatory roles in mitochondria biogenesis in blunt snout bream (Megalobrama amblycephala). A full-length cDNA of PGC-1β was cloned from liver which covered 3110 bp encoding 859 amino acids. The conserved motifs of PGC-1β family proteins were gained by MEME software, and the phylogenetic analyses showed motif loss and rearrangement of PGC-1β in fish. The function of PGC-1β was evaluated through overexpression and knockdown of PGC-1β in primary hepatocytes of blunt snout bream. We observed overexpression of PGC-1β along with enhanced mitochondrial transcription factor A (TFAM) expression and mtDNA copies in hepatocytes, and its knockdown led to slightly reduced NRF1 expression. However, knockdown of PGC-1β did not significantly influence TFAM expression or mtDNA copies. The alterations in mitochondria biogenesis were assessed following high-fat intake, and the results showed that it induces downregulation of PGC-1β. Furthermore, significant decreases in mitochondrial respiratory chain activities and mitochondria biogenesis were observed by high-fat intake. Our findings demonstrated that overexpression of PGC-1β induces the enhancement of TFAM expression and mtDNA amount but not NRF-1. Therefore, it could be concluded that PGC-1β is involved in mitochondrial biogenesis in blunt snout bream but not through PGC-1β/NRF-1 pathway.
College of Marine Science and Engineering Qingdao Agricultural University Qingdao 266109 China
Laboratory of Fish Nutrition and Physiology Fisheries College Jimei University Xiamen 361021 China
See more in PubMed
Scarpulla R.C. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim. Biophys. Acta Mol. Cell Res. 2011;1813:1269–1278. doi: 10.1016/j.bbamcr.2010.09.019. PubMed DOI PMC
Puigserver P., Wu Z., Park C.W., Graves R., Wright M., Spiegelman B.M. A Cold-Inducible Coactivator of Nuclear Receptors Linked to Adaptive Thermogenesis. Cell. 1998;92:829–839. doi: 10.1016/S0092-8674(00)81410-5. PubMed DOI
Andersson U., Scarpulla R.C. PGC-1-Related Coactivator, a Novel, Serum-Inducible Coactivator of Nuclear Respiratory Factor 1-Dependent Transcription in Mammalian Cells. Mol. Cell. Biol. 2001;21:3738–3749. doi: 10.1128/MCB.21.11.3738-3749.2001. PubMed DOI PMC
Puigserver P., Spiegelman B.M. Peroxisome Proliferator-Activated Receptor-γ Coactivator 1α (PGC-1α): Transcriptional Coactivator and Metabolic Regulator. Endocr. Rev. 2003;24:78–90. doi: 10.1210/er.2002-0012. PubMed DOI
Northam C., LeMoine C.M.R. Metabolic regulation by the PGC-1α and PGC-1β coactivators in larval zebrafish (Danio rerio) Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2019;234:60–67. doi: 10.1016/j.cbpa.2019.04.011. PubMed DOI
LeMoine C.M.R., Genge C.E., Moyes C.D. Role of the PGC-1 family in the metabolic adaptation of goldfish to diet and temperature. J. Exp. Biol. 2008;211:1448–1455. doi: 10.1242/jeb.014951. PubMed DOI
Bremer K., Moyes C.D. Origins of variation in muscle cytochrome C oxidase activity within and between fish species. J. Exp. Biol. 2011;214:1888–1895. doi: 10.1242/jeb.053330. PubMed DOI
Bremer K., Kocha K.M., Snider T., Moyes C.D. Sensing and responding to energetic stress: The role of the AMPK-PGC1α-NRF1 axis in control of mitochondrial biogenesis in fish. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2016;199:4–12. doi: 10.1016/j.cbpb.2015.09.005. PubMed DOI
Song X., Rahimnejad S., Zhou W., Cai L., Lu K. Molecular Characterization of Peroxisome Proliferator-Activated Receptor-Gamma Coactivator-1α (PGC1α) and Its Role in Mitochondrial Biogenesis in Blunt Snout Bream (Megalobrama amblycephala) Front. Physiol. 2019;9:1957. doi: 10.3389/fphys.2018.01957. PubMed DOI PMC
Goto M., Terada S., Kato M., Katoh M., Yokozeki T., Tabata I., Shimokawa T. cDNA Cloning and mRNA Analysis of PGC-1 in Epitrochlearis Muscle in Swimming-Exercised Rats. Biochem. Biophys. Res. Commun. 2000;274:350–354. doi: 10.1006/bbrc.2000.3134. PubMed DOI
Mortensen O.H., Frandsen L., Schjerling P., Nishimura E., Grunnet N. PGC-1α and PGC-1β have both similar and distinct effects on myofiber switching toward an oxidative phenotype. Am. J. Physiol. Metab. 2006;291:E807–E816. doi: 10.1152/ajpendo.00591.2005. PubMed DOI
Uldry M., Yang W., St-Pierre J., Lin J., Seale P., Spiegelman B.M. Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab. 2006;3:333–341. doi: 10.1016/j.cmet.2006.04.002. PubMed DOI
St-Pierre J., Lin J., Krauss S., Tarr P.T., Yang R., Newgard C.B., Spiegelman B.M. Bioenergetic Analysis of Peroxisome Proliferator-activated Receptor γ Coactivators 1α and 1β (PGC-1α and PGC-1β) in Muscle Cells. J. Biol. Chem. 2003;278:26597–26603. doi: 10.1074/jbc.M301850200. PubMed DOI
Frier B.C., Williams D.B., Wright D.C. The effects of apelin treatment on skeletal muscle mitochondrial content. Am. J. Physiol. Integr. Comp. Physiol. 2009;297:R1761–R1768. doi: 10.1152/ajpregu.00422.2009. PubMed DOI
LeMoine C.M.R., Lougheed S.C., Moyes C.D. Modular Evolution of PGC-1α in Vertebrates. J. Mol. Evol. 2010;70:492–505. doi: 10.1007/s00239-010-9347-x. PubMed DOI
Handschin C., Spiegelman B.M. Peroxisome Proliferator-Activated Receptor γ Coactivator 1 Coactivators, Energy Homeostasis, and Metabolism. Endocr. Rev. 2006;27:728–735. doi: 10.1210/er.2006-0037. PubMed DOI
Meirhaeghe A., Crowley V., Lenaghan C., Lelliott C., Green K., Stewart A., Hart K., Schinner S., Sethi J.K., Yeo G., et al. Characterization of the human, mouse and rat PGC1 beta (peroxisome-proliferator-activated receptor-gamma co-activator 1 beta) gene in vitro and in vivo. Biochem. J. 2003;373:155–165. doi: 10.1042/bj20030200. PubMed DOI PMC
Vercauteren K., Gleyzer N., Scarpulla R.C. PGC-1-related coactivator complexes with HCF-1 and NRF-2beta in mediating NRF-2(GABP)-dependent respiratory gene expression. J. Biol. Chem. 2008;283:12102–12111. doi: 10.1074/jbc.M710150200. PubMed DOI PMC
Choi S., editor. 14-3-3alpha BT-Encyclopedia of Signaling Molecules. Springer International Publishing; Cham, Switzerland: 2018. p. 11.
Wilson-Fritch L., Burkart A., Bell G., Mendelson K., Leszyk J., Nicoloro S., Czech M., Corvera S. Mitochondrial Biogenesis and Remodeling during Adipogenesis and in Response to the Insulin Sensitizer Rosiglitazone. Mol. Cell. Biol. 2003;23:1085–1094. doi: 10.1128/MCB.23.3.1085-1094.2003. PubMed DOI PMC
Nagai Y., Yonemitsu S., Erion D.M., Iwasaki T., Stark R., Weismann D., Dong J., Zhang D., Jurczak M.J., Löffler M.G., et al. The role of peroxisome proliferator-activated receptor gamma coactivator-1 beta in the pathogenesis of fructose-induced insulin resistance. Cell Metab. 2009;9:252–264. doi: 10.1016/j.cmet.2009.01.011. PubMed DOI PMC
Lu R., Ji H., Chang Z., Su S., Yang G. Mitochondrial development and the influence of its dysfunction during rat adipocyte differentiation. Mol. Biol. Rep. 2010;37:2173–2182. doi: 10.1007/s11033-009-9695-z. PubMed DOI
Bremer K., Monk C.T., Gurd B.J., Moyes C.D. Transcriptional regulation of temperature-induced remodeling of muscle bioenergetics in goldfish. Am. J. Physiol. Integr. Comp. Physiol. 2012;303:R150–R158. doi: 10.1152/ajpregu.00603.2011. PubMed DOI
Gao C.-L., Liu G.-L., Liu S., Chen X.-H., Ji C.-B., Zhang C.-M., Xia Z.-K., Guo X. Overexpression of PGC-1β improves insulin sensitivity and mitochondrial function in 3T3-L1 adipocytes. Mol. Cell. Biochem. 2011;353:215–223. doi: 10.1007/s11010-011-0789-2. PubMed DOI
Picca A., Lezza A.M.S. Regulation of mitochondrial biogenesis through TFAM–mitochondrial DNA interactions: Useful insights from aging and calorie restriction studies. Mitochondrion. 2015;25:67–75. doi: 10.1016/j.mito.2015.10.001. PubMed DOI
Wu Z., Puigserver P., Andersson U., Zhang C., Adelmant G., Mootha V., Troy A., Cinti S., Lowell B., Scarpulla R.C., et al. Mechanisms Controlling Mitochondrial Biogenesis and Respiration through the Thermogenic Coactivator PGC-1. Cell. 1999;98:115–124. doi: 10.1016/S0092-8674(00)80611-X. PubMed DOI
Shao D., Liu Y., Liu X., Zhu L., Cui Y., Cui A., Qiao A., Kong X., Liu Y., Chen Q., et al. PGC-1β-Regulated mitochondrial biogenesis and function in myotubes is mediated by NRF-1 and ERRα. Mitochondrion. 2010;10:516–527. doi: 10.1016/j.mito.2010.05.012. PubMed DOI
Gacias M., Pérez-Martí A., Pujol-Vidal M., Marrero P.F., Haro D., Relat J. PGC-1β regulates mouse carnitine–acylcarnitine translocase through estrogen-related receptor α. Biochem. Biophys. Res. Commun. 2012;423:838–843. doi: 10.1016/j.bbrc.2012.06.051. PubMed DOI
Hood D., Takahashi M., Connor M., Freyssenet D. Assembly of the cellular powerhouse: Current issues in muscle mitochondrial biogenesis. Exerc. Sport Sci. Rev. 2000;28:68–73. PubMed
Raftery T.D., Jayasundara N., Di Giulio R.T. A bioenergetics assay for studying the effects of environmental stressors on mitochondrial function in vivo in zebrafish larvae. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2017;192:23–32. doi: 10.1016/j.cbpc.2016.12.001. PubMed DOI PMC
Lagouge M., Argmann C., Gerhart-Hines Z., Meziane H., Lerin C., Daussin F., Messadeq N., Milne J., Lambert P., Elliott P., et al. Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by Activating SIRT1 and PGC-1α. Cell. 2006;127:1109–1122. doi: 10.1016/j.cell.2006.11.013. PubMed DOI
Csiszar A., Labinskyy N., Pinto J.T., Ballabh P., Zhang H., Losonczy G., Pearson K., de Cabo R., Pacher P., Zhang C., et al. Resveratrol induces mitochondrial biogenesis in endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 2009;297:H13–H20. doi: 10.1152/ajpheart.00368.2009. PubMed DOI PMC
García-Ruiz I., Solís-Muñoz P., Fernández-Moreira D., Muñoz-Yagüe T., Solís-Herruzo J.A. In vitro treatment of HepG2 cells with saturated fatty acids reproduces mitochondrial dysfunction found in nonalcoholic steatohepatitis. Dis. Model. Mech. 2015;8:183–191. doi: 10.1242/dmm.018234. PubMed DOI PMC
Lee M.-S., Kim I.-H., Kim Y. Effects of Eicosapentaenoic Acid and Docosahexaenoic Acid on Uncoupling Protein 3 Gene Expression in C2C12 Muscle Cells. Nutrients. 2013;5:1660–1671. doi: 10.3390/nu5051660. PubMed DOI PMC
Verdin E., Hirschey M.D., Finley L.W.S., Haigis M.C. Sirtuin regulation of mitochondria: Energy production, apoptosis, and signaling. Trends Biochem. Sci. 2010;35:669–675. doi: 10.1016/j.tibs.2010.07.003. PubMed DOI PMC
Paradies G., Petrosillo G., Paradies V., Ruggiero F.M. Oxidative stress, mitochondrial bioenergetics, and cardiolipin in aging. Free Radic. Biol. Med. 2010;48:1286–1295. doi: 10.1016/j.freeradbiomed.2010.02.020. PubMed DOI
Rato L., Duarte A.I., Tomás G.D., Santos M.S., Moreira P.I., Socorro S., Cavaco J.E., Alves M.G., Oliveira P.F. Pre-diabetes alters testicular PGC1-α/SIRT3 axis modulating mitochondrial bioenergetics and oxidative stress. Biochim. Biophys. Acta Bioenerg. 2014;1837:335–344. doi: 10.1016/j.bbabio.2013.12.008. PubMed DOI
Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Syst. Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC
Livak K.J., Schmittgen T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI