Critical function of circular RNAs in lung cancer
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
32180372
DOI
10.1002/wrna.1592
Knihovny.cz E-zdroje
- Klíčová slova
- biomarkers, circRNAs, lung cancer, therapeutic target,
- MeSH
- cílená molekulární terapie MeSH
- kruhová RNA chemie genetika MeSH
- lidé MeSH
- nádorové biomarkery * MeSH
- nádory plic farmakoterapie genetika metabolismus patologie MeSH
- regulace genové exprese u nádorů * MeSH
- RNA interference MeSH
- signální transdukce MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- kruhová RNA MeSH
- nádorové biomarkery * MeSH
Lung cancer is one of the main causes of cancer-related death in the world, especially due to its frequency and ineffective therapeutically approaches in the late stages of the disease. Despite the recent advent of promising new targeted therapies, lung cancer diagnostic strategies still have difficulty in identifying the disease at an early stage. Therefore, the characterizations of more sensible and specific cancer biomarkers have become an important goal for clinicians. Circular RNAs (circRNAs), a type of RNA with covalently closed continuous loop structures that display high structural resistance and tissue specificity pointed toward a potential biomarker role. Current investigations have identified that circRNAs have a prominent function in the regulation of oncogenic pathways, by regulating gene expression both at transcriptional and post-transcriptional level. The aim of this review is to provide novel information regarding the implications of circRNAs in lung cancer, with an emphasis on the role in disease development and progression. Initially, we explored the potential utility of circRNAs as biomarkers, focusing on function, mechanisms, and correlation with disease progression in lung cancer. Further, we will describe the interaction between circRNAs and other non-coding species of RNA (particularly microRNA) and their biological significance in lung cancer. Describing the nature of these interactions and their therapeutic potential will provide additional insight regarding the altered molecular landscape of lung cancer and consolidate the potential clinical value of these circular transcripts. This article is categorized under: RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
5th Surgical Department Municipal Hospital Cluj Napoca Romania
Applied Biotechnology Research Center Baqiyatallah University of Medical Sciences Tehran Iran
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Comprehensive Cancer Care Masaryk Memorial Cancer Institute Brno Czech Republic
Department of Surgery Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca Romania
Department of Surgery The Oncology Institute Prof Dr Ion Chiricuta Cluj Napoca Romania
Zobrazit více v PubMed
An, J., Shi, H., Zhang, N., & Song, S. (2019). Elevation of circular RNA circ_0003645 forecasts unfavorable prognosis and facilitates cell progression via miR-1179/TMEM14A pathway in non-small cell lung cancer. Biochemical and Biophysical Research Communications., 511(4), 921-925.
Ashwal-Fluss, R., Meyer, M., Pamudurti, N. R., Ivanov, A., Bartok, O., Hanan, M., … Kadener, S. (2014). circRNA biogenesis competes with pre-mRNA splicing. Molecular Cell, 56(1), 55-66.
Barrett, S. P., & Salzman, J. (2016). Circular RNAs: Analysis, expression and potential functions. Development, 143(11), 1838-1847.
Bica-Pop, C., Cojocneanu-Petric, R., Magdo, L., Raduly, L., Gulei, D., & Berindan-Neagoe, I. (2018). Overview upon miR-21 in lung cancer: Focus on NSCLC. Cellular and Molecular Life Sciences, 75(19), 3539-3551.
Braicu, C., Catana, C., Calin, G. A., & Berindan-Neagoe, I. (2014). NCRNA combined therapy as future treatment option for cancer. Current Pharmaceutical Design, 20(42), 6565-6574.
Braicu, C., Raduly, L., Morar-Bolba, G., Cojocneanu, R., Jurj, A., Pop, L. A., … Berindan-Neagoe, I. (2018). Aberrant miRNAs expressed in HER-2 negative breast cancers patient. Journal of Experimental & Clinical Cancer Research, 37(1), 257.
Braicu, C., Zimta, A. A., Gulei, D., Olariu, A., & Berindan-Neagoe, I. (2019). Comprehensive analysis of circular RNAs in pathological states: Biogenesis, cellular regulation, and therapeutic relevance. Cellular and Molecular Life Sciences, 76, 1559-1577.
Braicu, C., Zimta, A.-A., Harangus, A., Iurca, I., Irimie, A., Coza, O., & Berindan-Neagoe, I. (2019). The function of non-coding RNAs in lung cancer tumorigenesis. Cancers, 11(5), 605.
Chen, D., Ma, W., Ke, Z., & Xie, F. (2018). CircRNA hsa_circ_100395 regulates miR-1228/TCF21 pathway to inhibit lung cancer progression. Cell Cycle (Georgetown, Tex), 17(16), 2080-2090.
Chen, F., Huang, C., Wu, Q., Jiang, L., Chen, S., & Chen, L. (2020). Circular RNAs expression profiles in plasma exosomes from early-stage lung adenocarcinoma and the potential biomarkers. Journal of Cellular Biochemistry, 121(3), 2525-2533. https://doi.org/10.1002/jcb.29475.
Chen, J., Xu, S., Chen, S., Zong, Z., Han, X., Zhao, Y., & Shang, H. (2019). CircPUM1 promotes the malignant behavior of lung adenocarcinoma by regulating miR-326. Biochemical and Biophysical Research Communications., 508(3), 844-849.
Chen, L., Nan, A., Zhang, N., Jia, Y., Li, X., Ling, Y., … Jiang, Y. (2019). Circular RNA 100146 functions as an oncogene through direct binding to miR-361-3p and miR-615-5p in non-small cell lung cancer. Molecular Cancer, 18(1), 13.
Chen, T., Luo, J., Gu, Y., Huang, J., Luo, Q., & Yang, Y. (2019). Comprehensive analysis of circular RNA profiling in AZD9291-resistant non-small cell lung cancer cell lines. Thoracic Cancer, 10(4), 930-941. https://doi.org/10.1111/1759-7714.13032.
Chen, X., Yang, T., Wang, W., Xi, W., Zhang, T., Li, Q., … Wang, T. (2019). Circular RNAs in immune responses and immune diseases. Theranostics., 9(2), 588-607.
Chen, Y., Min, L., Ren, C., Xu, X., Yang, J., Sun, X., … Zhang, X. (2017). miRNA-148a serves as a prognostic factor and suppresses migration and invasion through Wnt1 in non-small cell lung cancer. PLoS One, 12(2), e0171751.
Chen, Y., Wei, S., Wang, X., Zhu, X., & Han, S. (2018). Progress in research on the role of circular RNAs in lung cancer. World Journal of Surgical Oncology, 16(1), 215.
Chen, Y. G., Chen, R., Ahmad, S., Verma, R., Kasturi, S. P., Amaya, L., … Chang, H. Y. (2019). N6-methyladenosine modification controls circular RNA immunity. Molecular Cell, 76(1), 96-109.e9.
Cho, E. C., Kuo, M. L., Liu, X., Yang, L., Hsieh, Y. C., Wang, J., … Yen, Y. (2014). Tumor suppressor FOXO3 regulates ribonucleotide reductase subunit RRM2B and impacts on survival of cancer patients. Oncotarget, 5(13), 4834-4844.
Cui, J., Li, W., Liu, G., Chen, X., Gao, X., Lu, H., & Lin, D. (2019). A novel circular RNA, hsa_circ_0043278, acts as a potential biomarker and promotes non-small cell lung cancer cell proliferation and migration by regulating miR-520f. Artificial Cells, Nanomedicine, and Biotechnology., 47(1), 810-821.
Dai, X., Chen, C., Yang, Q., Xue, J., Chen, X., Sun, B., … Liu, Q. (2018). Exosomal circRNA_100284 from arsenite-transformed cells, via microRNA-217 regulation of EZH2, is involved in the malignant transformation of human hepatic cells by accelerating the cell cycle and promoting cell proliferation. Cell Death & Disease., 9(5), 454.
de Groot, P. M., Wu, C. C., Carter, B. W., & Munden, R. F. (2018). The epidemiology of lung cancer. Translational Lung Cancer Research., 7(3), 220-233.
Ding, L., Yao, W., Lu, J., Gong, J., & Zhang, X. (2018). Upregulation of circ_001569 predicts poor prognosis and promotes cell proliferation in non-small cell lung cancer by regulating the Wnt/β-catenin pathway. Oncology Letters., 16(1), 453-458.
Dragomir, M., & Calin, G. A. (2018). Circular RNAs in cancer - Lessons learned from microRNAs. Frontiers in Oncology, 8(179), eCollection 2018. https://doi.org/10.3389/fonc.2018.00179.
Du, W. W., Fang, L., Yang, W., Wu, N., Awan, F. M., Yang, Z., & Yang, B. B. (2017). Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death & Differentiation, 24(2), 357-370.
Du, W. W., Yang, W., Liu, E., Yang, Z., Dhaliwal, P., & Yang, B. B. (2016). Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Research, 44(6), 2846-2858.
Du, W. W., Zhang, C., Yang, W., Yong, T., Awan, F. M., & Yang, B. B. (2017). Identifying and characterizing circRNA-protein interaction. Theranostics., 7(17), 4183-4191.
Enuka, Y., Lauriola, M., Feldman, M. E., Sas-Chen, A., Ulitsky, I., & Yarden, Y. (2016). Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Research., 44(3), 1370-1383.
Gao, P., Wang, Z., Hu, Z., Jiao, X., & Yao, Y. (2020). Circular RNA circ_0074027 indicates a poor prognosis for NSCLC patients and modulates cell proliferation, apoptosis, and invasion via miR-185-3p mediated BRD4/MADD activation. Journal of Cellular Biochemistry, 121(3), 2632-2642. https://doi.org/10.1002/jcb.29484.
Gao, S., Yu, Y., Liu, L., Meng, J., & Li, G. (2019). Circular RNA hsa_circ_0007059 restrains proliferation and epithelial-mesenchymal transition in lung cancer cells via inhibiting microRNA-378. Life Sciences, 233, 116692.
Gomes, C. P. C., Salgado-Somoza, A., Creemers, E. E., Dieterich, C., Lustrek, M., & Devaux, Y. (2018). Circular RNAs in the cardiovascular system. Non-coding RNA Research., 3(1), 1-11.
Greene, J., Baird, A.-M., Brady, L., Lim, M., Gray, S. G., McDermott, R., & Finn, S. P. (2017). Circular RNAs: Biogenesis, function and role in human diseases. Frontiers in Molecular Biosciences, 4(38), eCollection 2017. https://doi.org/10.3389/fmolb.2017.00038.
Gu, X., Wang, G., Shen, H., & Fei, X. (2018). Hsa_circ_0033155: A potential novel biomarker for non-small cell lung cancer. Experimental and Therapeutic Medicine., 16(4), 3220-3226.
Gulei, D., Raduly, L., Broseghini, E., Ferracin, M., & Berindan-Neagoe, I. (2019). The extensive role of miR-155 in malignant and non-malignant diseases. Molecular Aspects of Medicine, 70, 33-56.
Guo, J. U., Agarwal, V., Guo, H., & Bartel, D. P. (2014). Expanded identification and characterization of mammalian circular RNAs. Genome Biology, 15(7), 409.
Han, W., Wang, L., Zhang, L., Wang, Y., & Li, Y. (2019). Circular RNA circ-RAD23B promotes cell growth and invasion by miR-593-3p/CCND2 and miR-653-5p/TIAM1 pathways in non-small cell lung cancer. Biochemical and Biophysical Research Communications, 510(3), 462-466.
Hang, D., Zhou, J., Qin, N., Zhou, W., Ma, H., Jin, G., … Shen, H. (2018). A novel plasma circular RNA circFARSA is a potential biomarker for non-small cell lung cancer. Cancer Medicine., 7(6), 2783-2791.
Holdt, L. M., Kohlmaier, A., & Teupser, D. (2018). Molecular roles and function of circular RNAs in eukaryotic cells. Cellular and Molecular Life Sciences: CMLS., 75(6), 1071-1098.
Huang, C., & Shan, G. (2015). What happens at or after transcription: Insights into circRNA biogenesis and function. Transcription., 6(4), 61-64.
Huang, Z., Su, R., Deng, Z., Xu, J., Peng, Y., Luo, Q., & Li, J. (2017). Identification of differentially expressed circular RNAs in human monocyte derived macrophages response to Mycobacterium tuberculosis infection. Scientific Reports, 7(1), 13673.
Irimie, A. I., Braicu, C., Cojocneanu-Petric, R., Berindan-Neagoe, I., & Campian, R. S. (2015). Novel technologies for oral squamous carcinoma biomarkers in diagnostics and prognostics. Acta Odontologica Scandinavica, 73(3), 161-168.
Irimie, A. I., Braicu, C., Sonea, L., Zimta, A. A., Cojocneanu-Petric, R., Tonchev, K., … Berindan-Neagoe, I. (2017). A looking-glass of non-coding RNAs in oral cancer. International Journal of Molecular Sciences, 18(12), E2620. https://doi.org/10.3390/ijms18122620.
Jiang, M. M., Mai, Z. T., Wan, S. Z., Chi, Y. M., Zhang, X., Sun, B. H., & di, Q. G. (2018). Microarray profiles reveal that circular RNA hsa_circ_0007385 functions as an oncogene in non-small cell lung cancer tumorigenesis. Journal of Cancer Research and Clinical Oncology., 144(4), 667-674.
Jin, X., Guan, Y., Sheng, H., & Liu, Y. (2017). Crosstalk in competing endogenous RNA network reveals the complex molecular mechanism underlying lung cancer. Oncotarget, 8(53), 91270-91280.
Jurj, A., Braicu, C., Pop, L. A., Tomuleasa, C., Gherman, C. D., & Berindan-Neagoe, I. (2017). The new era of nanotechnology, an alternative to change cancer treatment. Drug Design, Development and Therapy, 11, 2871-2890.
Karia, B. T. R., Zamuner, F. T., Carlin, V., de Oliveira, C. Z., Carvalho, A. L., & Vettore, A. L. (2017). Expression and prognostic relevance of GAGE1 and XAGE1 cancer/testis antigens in head and neck squamous cell carcinoma. Current Molecular Medicine., 17(10), 707-717.
Kristensen, L. S., Andersen, M. S., Stagsted, L. V. W., Ebbesen, K. K., Hansen, T. B., & Kjems, J. (2019). The biogenesis, biology and characterization of circular RNAs. Nature Reviews. Genetics, 20(11), 675-691.
Lasda, E., & Parker, R. (2016). Circular RNAs co-precipitate with extracellular vesicles: A possible mechanism for circRNA clearance. PLoS One, 11(2), e0148407.
Li, R. C., Ke, S., Meng, F. K., Lu, J., Zou, X. J., He, Z. G., … Fang, M. H. (2018). CiRS-7 promotes growth and metastasis of esophageal squamous cell carcinoma via regulation of miR-7/HOXB13. Cell Death & Disease, 9(8), 838.
Li, S., & Han, L. (2019). Circular RNAs as promising biomarkers in cancer: Detection, function, and beyond. Genome Medicine, 11(1), 15.
Li, S., Niu, X., Li, H., Liang, Y., Sun, Z., & Yan, Y. (2019). Circ_0000003 promotes the proliferation and metastasis of non-small cell lung cancer cells via miR-338-3p/insulin receptor substrate 2. Cell Cycle, 18(24), 3525-3539.
Li, W., Jiang, W., Liu, T., Lv, J., & Guan, J. (2019). Enhanced expression of circ_0000735 forecasts clinical severity in NSCLC and promotes cell progression via sponging miR-1179 and miR-1182. Biochemical and Biophysical Research Communications, 510(3), 467-471.
Li, X., Yang, L., & Chen, L.-L. (2018). The biogenesis, functions, and challenges of circular RNAs. Molecular Cell, 71(3), 428-442.
Li, X., Zhang, Z., Jiang, H., Li, Q., Wang, R., Pan, H., … Gao, J. (2018). Circular RNA circPVT1 promotes proliferation and invasion through sponging miR-125b and activating E2F2 Signaling in non-small cell lung cancer. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology., 51(5), 2324-2340.
Li, Y., Hu, J., Li, L., Cai, S., Zhang, H., Zhu, X., … Dong, X. (2018). Upregulated circular RNA circ_0016760 indicates unfavorable prognosis in NSCLC and promotes cell progression through miR-1287/GAGE1 axis. Biochemical and Biophysical Research Communications., 503(3), 2089-2094.
Li, Y., Zheng, Q., Bao, C., Li, S., Guo, W., Zhao, J., … Huang, S. (2015). Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Research., 25(8), 981-984.
Liu, C. X., Li, X., Nan, F., Jiang, S., Gao, X., Guo, S. K., … Chen, L. L. (2019). Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell, 177(4), 865-80.e21.
Liu, G., Shi, H., Deng, L., Zheng, H., Kong, W., Wen, X., & Bi, H. (2019). Circular RNA circ-FOXM1 facilitates cell progression as ceRNA to target PPDPF and MACC1 by sponging miR-1304-5p in non-small cell lung cancer. Biochemical and Biophysical Research Communications., 513(1), 207-212.
Liu, T., Song, Z., & Gai, Y. (2018). Circular RNA circ_0001649 acts as a prognostic biomarker and inhibits NSCLC progression via sponging miR-331-3p and miR-338-5p. Biochemical and Biophysical Research Communications., 503(3), 1503-1509.
Liu, X.-X., Yang, Y.-E., Liu, X., Zhang, M.-Y., Li, R., Yin, Y.-H., & Qu, Y.-Q. (2019). A two-circular RNA signature as a noninvasive diagnostic biomarker for lung adenocarcinoma. Journal of Translational Medicine, 17(1), 50.
Liu, Y., Ao, X., Ding, W., Ponnusamy, M., Wu, W., Hao, X., … Wang, J. (2018). Critical role of FOXO3a in carcinogenesis. Molecular Cancer, 17(1), 104.
Lu, H., Han, X., Ren, J., Ren, K., Li, Z., & Sun, Z. (2020). Circular RNA HIPK3 induces cell proliferation and inhibits apoptosis in non-small cell lung cancer through sponging miR-149. Cancer Biology & Therapy, 21(2), 113-121. https://doi.org/10.1080/15384047.2019.1669995.
Ma, Y., Zhang, X., Wang, Y. Z., Tian, H., & Xu, S. (2019). Research progress of circular RNAs in lung cancer. Cancer Biology & Therapy, 20(2), 123-129.
Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., … Rajewsky, N. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 495(7441), 333-338.
Nan, A., Chen, L., Zhang, N., Jia, Y., Li, X., Zhou, H., … Jiang, Y. (2019). Circular RNA circNOL10 inhibits lung cancer development by promoting SCLM1-mediated transcriptional regulation of the Humanin polypeptide family. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 6(2), 1800654.
Pamudurti, N. R., Bartok, O., Jens, M., Ashwal-Fluss, R., Stottmeister, C., Ruhe, L., … Kadener, S. (2017). Translation of CircRNAs. Molecular Cell, 66(1), 9-21.e7.
Panda, A. C. (2018). Circular RNAs act as miRNA sponges. Advances in Experimental Medicine and Biology, 1087, 67-79.
Pop-Bica, C., Gulei, D., Cojocneanu-Petric, R., Braicu, C., Petrut, B., & Berindan-Neagoe, I. (2017). Understanding the role of non-coding RNAs in bladder cancer: From dark matter to valuable therapeutic targets. International Journal of Molecular Sciences, 18(7), E1514. https://doi.org/10.3390/ijms18071514.
Qi, Y., Zhang, B., Wang, J., & Yao, M. (2018). Upregulation of circular RNA hsa_circ_0007534 predicts unfavorable prognosis for NSCLC and exerts oncogenic properties in vitro and in vivo. Gene, 676, 79-85.
Qian, Z., Liu, H., Li, M., Shi, J., Li, N., Zhang, Y., … Gu, W. (2018). Potential diagnostic power of blood circular RNA expression in active pulmonary tuberculosis. eBioMedicine, 27, 18-26.
Qin, S., Zhao, Y., Lim, G., Lin, H., Zhang, X., & Zhang, X. (2019). Circular RNA PVT1 acts as a competing endogenous RNA for miR-497 in promoting non-small cell lung cancer progression. Biomedicine & Pharmacotherapy, 111, 244-250.
Qiu, B. Q., Zhang, P. F., Xiong, D., Xu, J. J., Long, X., Zhu, S. Q., … Wu, Y. B. (2019). CircRNA fibroblast growth factor receptor 3 promotes tumor progression in non-small cell lung cancer by regulating Galectin-1-AKT/ERK1/2 signaling. Journal of Cellular Physiology., 234(7), 11256-11264.
Qiu, M., Xia, W., Chen, R., Wang, S., Xu, Y., Ma, Z., … Xu, L. (2018). The circular RNA circPRKCI promotes tumor growth in lung adenocarcinoma. Cancer Research, 78(11), 2839-2851.
Qu, D., Yan, B., Xin, R., & Ma, T. (2018). A novel circular RNA hsa_circ_0020123 exerts oncogenic properties through suppression of miR-144 in non-small cell lung cancer. American Journal of Cancer Research., 8(8), 1387-1402.
Radoi, V., Carsote, M., Petris, R., Paun, D., & Poiana, C. (2014). MicroRNAs with specific roles in diabetes and psychiatric diseases. Clujul Med., 87(2), 87-90.
Rigoutsos, I., Lee, S. K., Nam, S. Y., Anfossi, S., Pasculli, B., Pichler, M., … Calin, G. A. (2017). N-BLR, a primate-specific non-coding transcript leads to colorectal cancer invasion and migration. Genome Biology, 18(1), 98.
Rodriguez-Canales, J., Parra-Cuentas, E., & Wistuba, I. I. (2016). Diagnosis and molecular classification of lung cancer. Cancer Treatment and Research, 170, 25-46.
Rong, D., Sun, H., Li, Z., Liu, S., Dong, C., Fu, K., … Cao, H. (2017). An emerging function of circRNA-miRNAs-mRNA axis in human diseases. Oncotarget, 8(42), 73271-73281.
Ruan, H., Xiang, Y., Ko, J., Li, S., Jing, Y., Zhu, X., … Han, L. (2019). Comprehensive characterization of circular RNAs in ~ 1000 human cancer cell lines. Genome Medicine, 11(1), 55.
Shen, B., Wang, Z., Li, Z., Song, H., & Ding, X. (2019). Circular RNAs: An emerging landscape in tumor metastasis. American Journal of Cancer Research, 9(4), 630-643.
Siegel, R. L., Miller, K. D., & Jemal, A. (2018). Cancer statistics, 2018. CA: A Cancer Journal for Clinicians, 68(1), 7-30.
Sulaiman, S. A., Abdul Murad, N. A., Mohamad Hanif, E. A., Abu, N., & Jamal, R. (2018). Prospective advances in circular RNA investigation. Advances in Experimental Medicine and Biology, 1087, 357-370.
Tian, X., Zhang, L., Jiao, Y., Chen, J., Shan, Y., & Yang, W. (2019). CircABCB10 promotes nonsmall cell lung cancer cell proliferation and migration by regulating the miR-1252/FOXR2 axis. Journal of Cellular Biochemistry, 120(3), 3765-3772.
Van Roosbroeck, K., Fanini, F., Setoyama, T., Ivan, C., Rodriguez-Aguayo, C., Fuentes-Mattei, E., … Calin, G. A. (2017). Combining anti-Mir-155 with chemotherapy for the treatment of lung cancers. Clinical Cancer Research, 23(11), 2891-2904.
Wang, C., Tan, S., Liu, W. R., Lei, Q., Qiao, W., Wu, Y., … Li, W. (2019). RNA-Seq profiling of circular RNA in human lung adenocarcinoma and squamous cell carcinoma. Molecular Cancer, 18(1), 134.
Wang, J., Zhao, X., Wang, Y., Ren, F., Sun, D., Yan, Y., … Xu, S. D. (2020). circRNA-002178 act as a ceRNA to promote PDL1/PD1 expression in lung adenocarcinoma. Cell Death & Disease, 11(1), 32.
Wang, L., Tong, X., Zhou, Z., Wang, S., Lei, Z., Zhang, T., … Zhang, H. T. (2018). Circular RNA hsa_circ_0008305 (circPTK2) inhibits TGF-beta-induced epithelial-mesenchymal transition and metastasis by controlling TIF1gamma in non-small cell lung cancer. Molecular Cancer., 17(1), 140.
Wang, Y., Li, Y., He, H., & Wang, F. (2019). Circular RNA circ-PRMT5 facilitates non-small cell lung cancer proliferation through upregulating EZH2 via sponging miR-377/382/498. Gene, 720, 144099.
Wang, Z., Lei, X., & Wu, F. X. (2019). Identifying cancer-specific circRNA-RBP binding sites based on deep learning. Molecules, 24(22), E4035. https://doi.org/10.3390/molecules24224035.
Wei, M. M., & Zhou, G. B. (2016). Long non-coding RNAs and their roles in non-small-cell lung cancer. Genomics, Proteomics & Bioinformatics, 14(5), 280-288.
Weijts, B. G., Bakker, W. J., Cornelissen, P. W., Liang, K. H., Schaftenaar, F. H., Westendorp, B., … de Bruin, A. (2012). E2F7 and E2F8 promote angiogenesis through transcriptional activation of VEGFA in cooperation with HIF1. The EMBO Journal, 31(19), 3871-3884.
Wesselhoeft, R. A., Kowalski, P. S., Parker-Hale, F. C., Huang, Y., Bisaria, N., & Anderson, D. G. (2019). RNA circularization diminishes immunogenicity and can extend translation duration in vivo. Molecular Cell, 74(3), 508-20.e4.
Wong, M. C. S., Lao, X. Q., Ho, K.-F., Goggins, W. B., & Tse, S. L. A. (2017). Incidence and mortality of lung cancer: Global trends and association with socioeconomic status. Scientific Reports, 7(1), 14300.
Xin, Z., Ma, Q., Ren, S., Wang, G., & Li, F. (2017). The understanding of circular RNAs as special triggers in carcinogenesis. Briefings in Functional Genomics, 16(2), 80-86. https://doi.org/10.1093/bfgp/elw001.
Xu, Z., Yan, Y., Zeng, S., Dai, S., Chen, X., Wei, J., & Gong, Z. (2017). Circular RNAs: clinical relevance in cancer. Oncotarget, 9(1), 1444-1460.
Xue, X., Liu, Y., Wang, Y., Meng, M., Wang, K., Zang, X., … Liu, S. (2016). MiR-21 and MiR-155 promote non-small cell lung cancer progression by downregulating SOCS1, SOCS6, and PTEN. Oncotarget, 7(51), 84508-84519.
Yan, B., Zhang, W., Mao, X. W., & Jiang, L. Y. (2018). Circular RNA ciRS-7 correlates with advance disease and poor prognosis, and its down-regulation inhibits cells proliferation while induces cells apoptosis in non-small cell lung cancer. European Review for Medical and Pharmacological Sciences, 22(24), 8712-8721.
Yang, Z., Xie, L., Han, L., Qu, X., Yang, Y., Zhang, Y., … Li, J. (2017). Circular RNAs: Regulators of cancer-related signaling pathways and potential diagnostic biomarkers for human cancers. Theranostics., 7(12), 3106-3117.
Ying, X., Zhu, J., & Zhang, Y. (2019). Circular RNA circ-TSPAN4 promotes lung adenocarcinoma metastasis by upregulating ZEB1 via sponging miR-665. Molecular Genetics & Genomic Medicine, 7, e991.
Yu, H., Chen, Y., & Jiang, P. (2018). Circular RNA HIPK3 exerts oncogenic properties through suppression of miR-124 in lung cancer. Biochemical and Biophysical Research Communications., 506, 455-462.
Yu, W., Jiang, H., Zhang, H., & Li, J. (2018). Hsa_circ_0003998 promotes cell proliferation and invasion by targeting miR-326 in non-small cell lung cancer. OncoTargets and Therapy., 11, 5569-5577.
Zhang, B., Chen, M., Jiang, N., Shi, K., & Qian, R. (2019). A regulatory circuit of circ-MTO1/miR-17/QKI-5 inhibits the proliferation of lung adenocarcinoma. Cancer Biology & Therapy, 20(8), 1127-1135. https://doi.org/10.1080/15384047.2019.1598762.
Zhang, F., Zhao, X., Dong, H., & Xu, J. (2018). circRNA expression analysis in lung adenocarcinoma: Comparison of paired fresh frozen and formalin-fixed paraffin-embedded specimens. Biochemical and Biophysical Research Communications., 500(3), 738-743.
Zhang, K., Pan, X., Yang, Y., & Shen, H. B. (2019). CRIP: Predicting circRNA-RBP-binding sites using a codon-based encoding and hybrid deep neural networks. RNA, 25(12), 1604-1615.
Zhang, P.-F., Pei, X., Li, K.-S., Jin, L.-N., Wang, F., Wu, J., & Zhang, X.-M. (2019). Circular RNA circFGFR1 promotes progression and anti-PD-1 resistance by sponging miR-381-3p in non-small cell lung cancer cells. Molecular Cancer, 18(1), 179.
Zhang, S., Zeng, X., Ding, T., Guo, L., Li, Y., Ou, S., & Yuan, H. (2018). Microarray profile of circular RNAs identifies hsa_circ_0014130 as a new circular RNA biomarker in non-small cell lung cancer. Scientific Reports, 8(1), 2878.
Zhang, X., Wang, Q., & Zhang, S. (2019). MicroRNAs in sputum specimen as noninvasive biomarkers for the diagnosis of nonsmall cell lung cancer: An updated meta-analysis. Medicine, 98(6), e14337-e.
Zhang, X., Zhu, M., Yang, R., Zhao, W., Hu, X., & Gan, J. (2017). Identification and comparison of novel circular RNAs with associated co-expression and competing endogenous RNA networks in pulmonary tuberculosis. Oncotarget, 8(69), 113571-113582.
Zhang, X. O., Wang, H. B., Zhang, Y., Lu, X., Chen, L. L., & Yang, L. (2014). Complementary sequence-mediated exon circularization. Cell, 159(1), 134-147.
Zhang, Y., Zhang, X. O., Chen, T., Xiang, J. F., Yin, Q. F., Xing, Y. H., … Chen, L. L. (2013). Circular intronic long noncoding RNAs. Molecular Cell, 51(6), 792-806.
Zhang, Y., Zhao, H., & Zhang, L. (2018). Identification of the tumor-suppressive function of circular RNA FOXO3 in non-small cell lung cancer through sponging miR-155. Molecular Medicine Reports., 17(6), 7692-7700.
Zhang, Z., Yang, T., & Xiao, J. (2018). Circular RNAs: Promising biomarkers for human diseases. eBioMedicine, 34, 267-274.
Zhao, J., Li, L., Wang, Q., Han, H., Zhan, Q., & Xu, M. (2017). CircRNA expression profile in early-stage lung adenocarcinoma patients. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology., 44(6), 2138-2146.
Zhou, Y., Zheng, X., Xu, B., Chen, L., Wang, Q., Deng, H., & Jiang, J. (2019). Circular RNA hsa_circ_0004015 regulates the proliferation, invasion, and TKI drug resistance of non-small cell lung cancer by miR-1183/PDPK1 signaling pathway. Biochemical and Biophysical Research Communications., 508(2), 527-535.
Zhu, L. P., He, Y. J., Hou, J. C., Chen, X., Zhou, S. Y., Yang, S. J., … Tang, J.-H. (2017). The role of circRNAs in cancers. Bioscience Reports, 37(5), BSR20170750. https://doi.org/10.1042/BSR20170750.
Zhu, X., Wang, X., Wei, S., Chen, Y., Chen, Y., Fan, X., … Wu, G. (2017). hsa_circ_0013958: a circular RNA and potential novel biomarker for lung adenocarcinoma. The FEBS Journal., 284(14), 2170-2182.
Zou, Q., Wang, T., Li, B., Li, G., Zhang, L., Wang, B., & Sun, S. (2018). Overexpression of circ-0067934 is associated with increased cellular proliferation and the prognosis of non-small cell lung cancer. Oncology Letters, 16(5), 5551-5556.