Screening of Chilli Pepper Genotypes as a Source of Capsaicinoids and Antioxidants under Conditions of Simulated Drought Stress
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_017/0002334
Ministerstvo Školství, Mládeže a Tělovýchovy
IGA-ZF/2019-AP004
Mendelova Univerzita v Brně
PubMed
32188104
PubMed Central
PMC7154834
DOI
10.3390/plants9030364
PII: plants9030364
Knihovny.cz E-zdroje
- Klíčová slova
- Capsicum, Scoville Heat Units, ascorbic acid, cultivar, phenolics, radical scavenging activity, soluble carbohydrates, stress,
- Publikační typ
- časopisecké články MeSH
In many regions of the world, the production of vegetable crops is limited by a deepening water crisis. Drought stress affects productivity and the chemical composition of crops. The variability of drought tolerance between species and cultivars of economically important crops, such as pepper (Capsicum species), requires specific investigations to understand the physiological and biochemical responses to the aftermath of drought. The fruits and leaves of four chilli pepper cultivars were investigated to elucidate the fruits' pungency (Scoville Heat Units, SHU), ascorbic acid content, DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity, polyphenol content, membrane lipid peroxidation and key protective antioxidant enzyme activity under drought stress (18-28% volumetric water content) as compared to the control (35-60%). Drought increased the chilli pepper fruits' pungency expressed in Scoville Heat Units (SHU) as well as ascorbic acid content, but this relationship was also dependent on genotype and stress duration. 'Jolokia' was marked as most sensitive to drought by increasing content of capsaicinoids and DPPH˙ scavenging activity under stress conditions. Capsaicinoids and Ascorbic acid (AsA) greatly influenced the antioxidant activity of highly pungent chilli pepper fruits, although total phenols played a significant role in the mildly pungent genotypes. Generally, the activities of antioxidant enzymes increased under drought in chilli pepper leaves and fruits, although the intensity of the reaction varied among the cultivars used in the current research. All the investigated biochemical parameters were involved in the drought response of chilli pepper plants, but their significance and effectiveness were highly cultivar-dependent.
Zobrazit více v PubMed
Ruiz-Lau N., Medina-Lara F., Minero-García Y., Zamudio-Moreno E., Guzmán-Antonio A., Echevarría-Machado I., Martínez-Estévez M. Water Deficit Affects the Accumulation of Capsaicinoids in Fruits of Capsicum chinense Jacq. HortScience. 2011;46:487–492. doi: 10.21273/HORTSCI.46.3.487. DOI
Pastor V., Luna E., Mauch-Mani B., Ton J., Flors V. Primed plants do not forget. Environ. Exp. Bot. 2013;94:46–56. doi: 10.1016/j.envexpbot.2012.02.013. DOI
Perry L., Dickau R., Zarrillo S., Holst I., Pearsall D.M., Piperno D.R., Berman M.J., Cooke R.G., Rademaker K., Ranere A.J., et al. Starch fossils and the domestication and dispersal of chilli peppers (Capsicum spp. L.) in the Americas. Science. 2007;315:986–988. doi: 10.1126/science.1136914. PubMed DOI
Ambroszczyk A., Cebula S., Sekara A. The effect of plant pruning on the light conditions and vegetative development of eggplant (Solanum melongena L.) in greenhouse cultivation. Veg. Crop. Res. Bull. 2008;68:57–70. doi: 10.2478/v10032-008-0005-4. DOI
Ambroszczyk A.M., Cebula S., Sekara A. The effect of shoot training on yield, fruit quality and leaf chemical composition of eggplant in greenhouse cultivation. Folia Hortic. 2008;20:3–15. doi: 10.2478/fhort-2013-0109. DOI
Perez-Grajales M., Dickau R., Zarrillo S., Holst I., Pearsall D.M., Piperno D.R., Berman M.J., Cooke R.G., Rademaker K., Ranere A.J., et al. Content of capsaicinoids and physicochemical characteristics of Manzano hot pepper grown in greenhouse. Not. Bot. Horti Agrobot. Cluj Napoca. 2019;47:119–127. doi: 10.15835/nbha47111241. DOI
González-Zamora A., Sierra-Campos E., Luna-Ortega J.G., Pérez-Morales R., Ortiz J.C.R., García-Hernández J.L. Characterization of different capsicum varieties by evaluation of their capsaicinoids content by high performance liquid chromatography, determination of pungency and effect of high temperature. Molecules. 2013;18:13471–13486. doi: 10.3390/molecules181113471. PubMed DOI PMC
Zhuang Y., Chen L., Sun L., Cao J. Bioactive characteristics and antioxidant activities of nine peppers. J. Funct. Foods. 2012;4:331–338. doi: 10.1016/j.jff.2012.01.001. DOI
Wahyuni Y., Ballester A.R., Sudarmonowati E., Bino R.J., Bovy G.A. Secondary metabolites of Capsicum species and their importance in the human diet. J. Nat. Prod. 2013;76:783–793. doi: 10.1021/np300898z. PubMed DOI
Barbero G.F., de Aguiar A.C., Carrera C., Olachea Á., Ferreiro-González M., Martínez J., Palma M., Barroso C.G. Evolution of capsaicinoids in peter pepper (Capsicum annuum var. annuum) during fruit ripening. Chem. Biodivers. 2016;13:1068–1075. doi: 10.1002/cbdv.201500503. PubMed DOI
Airaki M., Leterrier M., Mateos R.M., Valderrama R., Chaki M., Barroso J.B., Del Río L.A., Palma J.M., Corpas F.J. Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress. Plant Cell Environ. 2012;35:281–295. doi: 10.1111/j.1365-3040.2011.02310.x. PubMed DOI
Mardani S., Tabatabaei S.H., Pessarakli M., Zareabyaneh H. Physiological responses of pepper plant (Capsicum annuum L.) to drought stress. J. Plant Nutr. 2017;40:1453–1464. doi: 10.1080/01904167.2016.1269342. DOI
Ozkur O., Ozdemir F., Bor M., Turkan I. Physiochemical and antioxidant responses of the perennial xerophyte Capparis ovata Desf. to drought. Environ. Exp. Bot. 2009;66:487–492. doi: 10.1016/j.envexpbot.2009.04.003. DOI
Hu W.H., Xiao Y.A., Zeng J.J., Hu X.H. Photosynthesis, respiration and antioxidant enzymes in pepper leaves under drought and heat stresses. Biol. Plant. 2010;54:761–765. doi: 10.1007/s10535-010-0137-5. DOI
Navarro J.M., Flores P., Garrido C., Martinez V. Changes in the contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity. Food Chem. 2006;96:66–73. doi: 10.1016/j.foodchem.2005.01.057. DOI
Chaves M.M., Maroco J.P., Pereir J.S. Understanding plant responses to drought—From genes to the whole plant. Funct. Plant Biol. 2003;30:239–264. doi: 10.1071/FP02076. PubMed DOI
Sziderics A.H., Oufir M., Trognitz F., Kopecky D., Matušíková I., Hausman J.F., Wilhelm E. Organ-specific defence strategies of pepper (Capsicum annuum L.) during early phase of water deficit. Plant Cell Rep. 2010;29:295–305. doi: 10.1007/s00299-010-0822-z. PubMed DOI
Ramakrishna A., Aswathanarayana R.G. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011;6:1720–1731. PubMed PMC
Phimchan P., Techawongstien S., Chanthai S., Bosland P.W. Impact of drought stress on the accumulation of capsaicinoids in Capsicum cultivars with different initial capsaicinoid levels. HortScience. 2012;47:1204–1209. doi: 10.21273/HORTSCI.47.9.1204. DOI
Jeeatid N., Techawongstien S., Suriharn B., Chanthai S., Bosland P.W. Influence of water stresses on capsaicinoid production in hot pepper (Capsicum chinense Jacq.) cultivars with different pungency levels. Food Chem. 2018;245:792–797. doi: 10.1016/j.foodchem.2017.11.110. PubMed DOI
Okunlola G.O., Olatunji O.A., Akinwale R.O., Tariq A., Adelusi A.A. Physiological response of the three most cultivated pepper species (Capsicum spp.) in Africa to drought stress imposed at three stages of growth and development. Sci. Hortic. 2017;224:198–205. doi: 10.1016/j.scienta.2017.06.020. DOI
Sung Y., Yu-Yun C., Ni-Lun T. Capsaicin biosynthesis in water-stressed hot pepper fruits. Bot. Bull. Acad. Sin. 2005;46:35–42.
Guzmán I., Bosland P.W. Sensory properties of chilli pepper heat—And its importance to food quality and cultural preference. Appetite. 2017;117:186–190. doi: 10.1016/j.appet.2017.06.026. PubMed DOI
Dewitt D., Bosland P.W. The Complete Chile Pepper Book: A Gardener’s Guide to Choosing, Growing, Preserving, and Cooking. Timber Press; Portland, OR, USA: 2009.
Kantar M.B., Anderson J.E., Lucht S.A., Mercer K., Bernau V., Case K.A., Le N.C., Frederiksen M.K., DeKeyser H.C., Wong Z.-Z., et al. Vitamin variation in Capsicum spp. provides opportunities to improve nutritional value of human diets. PLoS ONE. 2016;11:e0161464. doi: 10.1371/journal.pone.0161464. PubMed DOI PMC
Maguire K. RHS Red Hot Chilli Grower: The Complete Guide to Planting, Picking and Preserving Chillies. Octopus Publishing Group Ltd.; London, UK: 2015. p. 144.
Gill S.S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry. 2010;48:909–930. doi: 10.1016/j.plaphy.2010.08.016. PubMed DOI
Gurung T., Techawongstien S., Suriharn B., Techawongstien S. Impact of environments on the accumulation of capsaicinoids in Capsicum spp. HortScience. 2011;46:1576–1581. doi: 10.21273/HORTSCI.46.12.1576. DOI
Othman Z.A., Ahmed Y.B., Habila M.A., Ghafar A.A. Determination of capsaicin and dihydrocapsaicin in Capsicum fruit samples using high performance liquid chromatography. Molecules. 2011;10:8919–8929. doi: 10.3390/molecules16108919. PubMed DOI PMC
Kopta T., Šlosár M., Andrejiová A., Jurica M., Pokluda R. The influence of genotype and season on the biological potential of chilli pepper cultivars. Folia Hortic. 2019;31:121–126. doi: 10.2478/fhort-2019-0029. DOI
Vaishnavi B.A., Bhoomika H.R., Raviraj Shetty G., Naveen N.E., Khanm H., Mohankumar H.D. Evaluation of bird’s eye chilli (Capsicum frutescens L.) accessions for quality traits. J. Pharm. Phytochem. 2018;7:170–172.
Tuteja N., Gill S.S., Tiburcio A.F., Tuteja R. Improving Crop Resistance to Abiotic Stress. Wiley-VCH Verlag GmbH & Company KGaA; Weinheim, Germany: 2012.
Kaur R., Nayyar H. Ascorbic acid: A potent defender against environmental stresses. In: Ahmad P., editor. Oxidative Damage to Plants. Academic Press; Amsterdam, The Netherlands: 2014. pp. 235–287.
Munné-Bosch S., Alegre L. Drought-induced changes in the redox state of alpha-tocopherol, ascorbate, and the diterpene carnosic acid in chloroplasts of Labiatae species differing in carnosic acid contents. Plant Physiol. 2003;131:1816–1825. doi: 10.1104/pp.102.019265. PubMed DOI PMC
Bartoli C.G., Guiamet J.J., Kiddle G., Pastori G.M., Di Cagno R., Theodoulou F.L., Foyer C.H. Ascorbate content of wheat leaves is not determined by maximal L-galactono-1,4-lactone dehydrogenase (GalLDH) activity under drought stress. Plant Cell Environ. 2005;28:1073–1081. doi: 10.1111/j.1365-3040.2005.01338.x. DOI
Seminario A., Song L., Zulet A., Nguyen H.T., González E.M., Larrainzar E. Drought stress causes a reduction in the biosynthesis of ascorbic acid in soybean plants. Front. Plant Sci. 2017;8:1042. doi: 10.3389/fpls.2017.01042. PubMed DOI PMC
Bogusz S., Jr., Libardi S.H., Dias F.F., Coutinho J.P., Bochi V.C., Rodrigues D., Melo A.M.T., Godoy H.T. Brazilian Capsicum peppers: Capsaicinoid content and antioxidant activity. J. Sci. Food Agric. 2018;98:217–224. doi: 10.1002/jsfa.8459. PubMed DOI
Asnin L., Park S.W. Isolation and analysis of bioactive compounds in capsicum peppers. Crit. Rev. Food Sci. Nutr. 2015;55:254–289. doi: 10.1080/10408398.2011.652316. PubMed DOI
Anjum S.A., Farooq M., Xie X.Y., Liu X.J., Ijaz M.F. Antioxidant defense system and proline accumulation enables hot pepper to perform better under drought. Sci. Hortic. 2012;140:66–73. doi: 10.1016/j.scienta.2012.03.028. DOI
Singh M., Kumar J., Singh S., Singh V.P., Prasad S.M. Roles of osmoprotectants in improving salinity and drought tolerance in plants: A review. Rev. Environ. Sci. Biotechnol. 2015;14:407–426. doi: 10.1007/s11157-015-9372-8. DOI
Laxa M., Liebthal M., Telman W., Chibani K., Dietz K.J. The role of the plant antioxidant system in drought tolerance. Antioxidants. 2019;8:94. doi: 10.3390/antiox8040094. PubMed DOI PMC
Farooq M., Wahid A., Kobayashi N., Fujita D., Basra S.M.A. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 2009;29:185–212. doi: 10.1051/agro:2008021. DOI
Vachun M. Meteorological Data 2019, Station Lednice. University Information System of Mendel University in Brno. [(accessed on 6 November 2019)]; Available online: http://is.mendelu.cz/2019.
Sawant L., Prabhakar B., Pandita N. Quantitative HPLC analysis of ascorbic acid and gallic acid in Phyllanthus emblica. J. Anal. Bioanal. Tech. 2010;1:111. doi: 10.4172/2155-9872.1000111. DOI
AOAC . Official Methods of Analysis. 18th ed. AOAC International; Gaithersburg, MD, USA: 2005. Method 995.03.
Djeridane A., Yousfi M., Nadjemi B., Boutassouna D., Stocker P., Vidal N. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compound. Food Chem. 2006;97:654–660. doi: 10.1016/j.foodchem.2005.04.028. DOI
Yemm E.W., Willis A. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 1954;57:508. doi: 10.1042/bj0570508. PubMed DOI PMC
Bartosz G. Druga Twarz Tlenu. Wolne Rodniki w Przyrodzie Free Radicals in Nature. 2nd ed. PWN; Warszawa, Poland: 2009.
Dhindsa R.S., Matowe W. Drought tolerance in two mosses: Correlated with enzymatic defense against lipid peroxidation. J. Exp. Bot. 1981;32:79–91. doi: 10.1093/jxb/32.1.79. DOI
Aebi H. Methods in Enzymology. Volume 105. Academic Press; Amsterdam, The Netherlands: 1984. Catalase in vitro; pp. 121–126. PubMed
Nakano Y., Asada K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981;22:867–880.
Zhang Z., Pang X., Duan X., Ji Z.L., Jiang Y. Role of peroxidase in anthocyanine degradation in litchi fruit pericarp. Food Chem. 2005;90:47–52. doi: 10.1016/j.foodchem.2004.03.023. DOI