Phytochemical Profiles and Antioxidant Activity of Grasses Used in South African Traditional Medicine
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32192145
PubMed Central
PMC7154885
DOI
10.3390/plants9030371
PII: plants9030371
Knihovny.cz E-zdroje
- Klíčová slova
- Poaceae, UHPLC, flavonoids, medicinal plants, phenolic acids, secondary metabolites,
- Publikační typ
- časopisecké články MeSH
Grasses are a valuable group of monocotyledonous plants, used as nourishing foods and as remedies against diseases for both humans and livestock. Phytochemical profiles of 13 medicinal grasses were quantified, using spectrophotometric methods and ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS), while the antioxidant activity was done using DPPH and ferric-reducing-power assays. The phytochemical analysis included the total soluble phenolic content, flavonoids, proanthocyanidins, iridoids and phenolic acids. Among the 13 grasses, the root methanolic extracts of Cymbopogon spp., Cymbopogon nardus and Cenchrus ciliaris contained the highest concentrations of total soluble phenolics (27-31 mg GAE/g DW) and flavonoids (4-13 mg CE/g DW). Condensed tannins and total iridoid content were highest (2.3 mg CCE/g DW and 3.2 mg HE/g DW, respectively) in Cymbopogon nardus. The most common phenolic compounds in the grass species included ρ-coumaric, ferulic, salicylic and vanillic acids. In the DPPH radical scavenging assay, the EC50 values ranged from 0.02 to 0.11 mg/mL for the different grasses. The best EC50 activity (lowest) was exhibited by Cymbopogon nardus roots (0.02 mg/mL) and inflorescences (0.04 mg/mL), Cymbopogon spp. roots (0.04 mg/mL) and Vetiveria zizanioides leaves (0.06 mg/mL). The highest ferric-reducing power was detected in the whole plant extract of Cynodon dactylon (0.085 ± 0.45; r2 = 0.898). The observed antioxidant activity in the various parts of the grasses may be due to their rich pool of phytochemicals. Thus, some of these grasses provide a source of natural antioxidants and phytochemicals that can be explored for their therapeutic purposes.
Zobrazit více v PubMed
Palombo E.A. Phytochemicals from traditional medicinal plants used in the treatment of diarrhoea: Modes of action and effects on intestinal function. Phytother. Res. 2006;20:717–724. doi: 10.1002/ptr.1907. PubMed DOI
Zhao J., Davis L.C., Verpoorte R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol. Adv. 2005;23:283–333. doi: 10.1016/j.biotechadv.2005.01.003. PubMed DOI
Coley P.D. Interspecific variation in plant anti-herbivore properties: The role of habitat quality and rate of disturbance. New Phytol. 1987;106:251–263. doi: 10.1111/j.1469-8137.1987.tb04693.x. DOI
Avoseh O., Oyedeji O., Rungqu P., Nkeh-Chungag B., Oyedeji A. Cymbopogon species; ethnopharmacology, phytochemistry and the pharmacological importance. Molecules. 2015;20:7438–7453. doi: 10.3390/molecules20057438. PubMed DOI PMC
Crozier A., Jaganath I.B., Clifford M.N. Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet. Blackwell Publishing; Oxford, UK: 2006. Phenols, polyphenols and tannins: An overview.
Ford J., Gaoue O.G. Alkaloid-Poor Plant Families, Poaceae and Cyperaceae, Are Over-Utilized for Medicine in Hawaiian Pharmacopoeia. Econ. Bot. 2017;71:123–132. doi: 10.1007/s12231-017-9380-4. DOI
Moerman D.E. An analysis of the food plants and drug plants of native North America. J. Ethnopharmacol. 1996;52:1–22. doi: 10.1016/0378-8741(96)01393-1. PubMed DOI
Stepp J.R., Moerman D.E. The importance of weeds in ethnopharmacology. J. Ethnopharmacol. 2001;75:19–23. doi: 10.1016/S0378-8741(00)00385-8. PubMed DOI
Gebashe F., Aremu A., Finnie J., Van Staden J. Grasses in South African traditional medicine: A review of their biological activities and phytochemical content. S. Afr. J. Bot. 2019;122:301–329. doi: 10.1016/j.sajb.2018.10.012. DOI
Kähkönen M.P., Hopia A.I., Vuorela H.J., Rauha J.-P., Pihlaja K., Kujala T.S., Heinonen M. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 1999;47:3954–3962. doi: 10.1021/jf990146l. PubMed DOI
Middleton E., Kandaswami C., Theoharides T.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 2000;52:673–751. PubMed
Tundis R., Loizzo M.R., Menichini F., Statti G.A., Menichini F. Biological and pharmacological activities of iridoids: Recent developments. Mini Rev. Med. Chem. 2008;8:399–420. doi: 10.2174/138955708783955926. PubMed DOI
Chiang L.-C., Ng L.T., Chiang W., Chang M.-Y., Lin C.-C. Immunomodulatory activities of flavonoids, monoterpenoids, triterpenoids, iridoid glycosides and phenolic compounds of Plantago species. Planta Med. 2003;69:600–604. PubMed
Anderson K.J., Teuber S.S., Gobeille A., Cremin P., Waterhouse A.L., Steinberg F.M. Walnut polyphenolics inhibit in vitro human plasma and LDL oxidation. J. Nutr. 2001;131:2837–2842. doi: 10.1093/jn/131.11.2837. PubMed DOI
Rizk A.M., Hammouda F., Ismail S., Kamel A., Rimpler H. Constituents of plants growing in Qatar part xxvii: Flavonoids of Cymbopogon parkeri. Qatar Univ. Sci. J. 1995;15:33–35.
Cheel J., Theoduloz C., Rodríguez J., Schmeda-Hirschmann G. Free radical scavengers and antioxidants from Lemongrass (Cymbopogon citratus (DC.) Stapf.) J. Agric. Food Chem. 2005;53:2511–2517. doi: 10.1021/jf0479766. PubMed DOI
Chesselet P., Wolfson M.M., Ellis R. A comparative histochemical study of plant polyphenols in southern African grasses. Afr. J. Range For. Sci. 1992;9:119–125. doi: 10.1080/02566702.1992.9648311. DOI
Kolodziej H., Kiderlen A.F. Antileishmanial activity and immune modulatory effects of tannins and related compounds on Leishmania parasitised RAW 264.7 cells. Phytochemistry. 2005;66:2056–2071. doi: 10.1016/j.phytochem.2005.01.011. PubMed DOI
Gurib-Fakim A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol. Asp. Med. 2006;27:1–93. doi: 10.1016/j.mam.2005.07.008. PubMed DOI
Gebashe F., Moyo M., Aremu A., Finnie J., Van Staden J. Ethnobotanical survey and antibacterial screening of medicinal grasses in KwaZulu-Natal Province, South Africa. S. Afr. J. Bot. 2019;22:467–474. doi: 10.1016/j.sajb.2018.07.027. DOI
Hartley R.D., Morrison W.H. Monomeric and dimeric phenolic acids released from cell walls of grasses by sequential treatment with sodium hydroxide. J. Sci. Food Agric. 1991;55:365–375. doi: 10.1002/jsfa.2740550305. DOI
Kroon P.A., Williamson G. Hydroxycinnamates in plants and food: Current and future perspectives. J. Sci. Food Agric. 1999;79:355–361. doi: 10.1002/(SICI)1097-0010(19990301)79:3<355::AID-JSFA255>3.0.CO;2-G. DOI
Ou S., Li Y., Gao K. A study on scavenging activity of wheat bran dietary fiber for free radical. Acta Nutr. Sin. 1999;21:191–194.
Zhang Z., Yao S., Lin W., Wang W., Jin Y., Lin N. Mechanism of reaction of nitrogen dioxide radical with hydroxycinnamic acid derivatives: A pulse radiolysis study. Free Radic. Res. 1998;29:13–16. PubMed
Ou S., Kwok K.C. Ferulic acid: Pharmaceutical functions, preparation and applications in foods. J. Sci. Food Agric. 2004;84:1261–1269. doi: 10.1002/jsfa.1873. DOI
Rice-Evans C.A., Miller N.J., Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996;20:933–956. doi: 10.1016/0891-5849(95)02227-9. PubMed DOI
Cuvelier M.-E., Richard H., Berset C. Comparison of the antioxidative activity of some acid-phenols: Structure-activity relationship. Biosci. Biotechnol. Biochem. 1992;56:324–325. doi: 10.1271/bbb.56.324. DOI
Gülçin I. Antioxidant Activity of Food Constituents: An Overview. Arch. Toxicol. 2012;86:345–391. doi: 10.1007/s00204-011-0774-2. PubMed DOI
Alam M.N., Bristi N.J., Rafiquzzaman M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J. 2013;21:143–152. doi: 10.1016/j.jsps.2012.05.002. PubMed DOI PMC
Krishnaiah D., Sarbatly R., Nithyanandam R. A review of the antioxidant potential of medicinal plant species. Food Bioprod. Process. 2011;89:217–233. doi: 10.1016/j.fbp.2010.04.008. DOI
Shahidi F., Janitha P., Wanasundara P. Phenolic antioxidants. Crit. Rev. Food Sci. Nutr. 1992;32:67–103. doi: 10.1080/10408399209527581. PubMed DOI
Gerber M., Boutron-Ruault M.-C., Hercberg S., Riboli E., Scalbert A., Siess M.-H. Food and cancer: State of the art about the protective effect of fruits and vegetables. Bull. Cancer. 2002;89:293–312. PubMed
Matteo V., Esposito E. Biochemical and therapeutic effects of antioxidants in the treatment of Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. CNS Neurol. Disord. Drug Targets. 2003;2:95–107. doi: 10.2174/1568007033482959. PubMed DOI
Sreejayan N., Rao M. Free radical scavenging activity of Curcuminoids. Arzneimittelforschung. 1996;46:169–171. PubMed
Gbenou J.D., Ahounou J.F., Akakpo H.B., Laleye A., Yayi E., Gbaguidi F., Baba-Moussa L., Darboux R., Dansou P., Moudachirou M. Phytochemical composition of Cymbopogon citratus and Eucalyptus citriodora essential oils and their anti-inflammatory and analgesic properties on Wistar rats. Mol. Biol. Rep. 2013;40:1127–1134. doi: 10.1007/s11033-012-2155-1. PubMed DOI
Soares M.O., Alves R.C., Pires P.C., Oliveira M.B.P., Vinha A.F. Angolan Cymbopogon citratus used for therapeutic benefits: Nutritional composition and influence of solvents in phytochemicals content and antioxidant activity of leaf extracts. Food Chem. Toxicol. 2013;60:413–418. doi: 10.1016/j.fct.2013.07.064. PubMed DOI
Wojdyło A., Oszmiański J., Czemerys R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007;105:940–949. doi: 10.1016/j.foodchem.2007.04.038. DOI
Aremu A.O., Amoo S.O., Ndhlala A.R., Finnie J.F., Van Staden J. Antioxidant activity, acetylcholinesterase inhibition, iridoid content and mutagenic evaluation of Leucosidea sericea. Food Chem. Toxicol. 2011;49:1122–1128. doi: 10.1016/j.fct.2011.02.003. PubMed DOI
Cao G., Prior R.L. Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clin. Chem. 1998;44:1309–1315. doi: 10.1093/clinchem/44.6.1309. PubMed DOI
Huang D., Ou B., Prior R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005;53:1841–1856. doi: 10.1021/jf030723c. PubMed DOI
Prior R.L., Wu X., Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005;53:4290–4302. doi: 10.1021/jf0502698. PubMed DOI
Makkar H.P.S. Quantification of Tannins in Tree Foliage. A Laboratory Manual for the FAO/IAEA Coordinated Research Project on ‘Use of Nuclear and Related Techniques to Develop Simple Tannin Assay for Predicting and Improving the Safety and Efficiency of Feeding Ruminants on the Tanniniferous Tree Foliage’. Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture; Vienna, Austria: 1999. pp. 1–29.
Jia Z., Tang M., Wu J. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999;64:555–559. doi: 10.1016/S0308-8146(98)00102-2. DOI
Levieille G., Wilson G. In vitro propagation and iridoid analysis of the medicinal species Harpagophytum procumbens and H. zeyheri. Plant Cell Rep. 2002;21:220–225.
Haag-Berrurier M., Kuballa B., Anton R. Dosage des glucoiridoïdes totaux dans la racine d’Harpagophytum procumbens DC. Plant Med. Phytother. 1978;12:197–206.
Gruz J., Novák O., Strnad M. Rapid analysis of phenolic acids in beverages by UPLC–MS/MS. Food Chem. 2008;111:789–794. doi: 10.1016/j.foodchem.2008.05.014. DOI
Karioti A., Hadjipavlou-Litina D., Mensah M.L., Fleischer T.C., Skaltsa H. Composition and antioxidant activity of the essential oils of Xylopia aethiopica (Dun) A. Rich.(Annonaceae) leaves, stem bark, root bark, and fresh and dried fruits, growing in Ghana. J. Agric. Food Chem. 2004;52:8094–8098. doi: 10.1021/jf040150j. PubMed DOI
Lim T., Lim Y., Yule C. Evaluation of antioxidant, antibacterial and anti-tyrosinase activities of four Macaranga species. Food Chem. 2009;114:594–599. doi: 10.1016/j.foodchem.2008.09.093. DOI