Phytochemical Profiles and Antioxidant Activity of Grasses Used in South African Traditional Medicine

. 2020 Mar 17 ; 9 (3) : . [epub] 20200317

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32192145

Grasses are a valuable group of monocotyledonous plants, used as nourishing foods and as remedies against diseases for both humans and livestock. Phytochemical profiles of 13 medicinal grasses were quantified, using spectrophotometric methods and ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS), while the antioxidant activity was done using DPPH and ferric-reducing-power assays. The phytochemical analysis included the total soluble phenolic content, flavonoids, proanthocyanidins, iridoids and phenolic acids. Among the 13 grasses, the root methanolic extracts of Cymbopogon spp., Cymbopogon nardus and Cenchrus ciliaris contained the highest concentrations of total soluble phenolics (27-31 mg GAE/g DW) and flavonoids (4-13 mg CE/g DW). Condensed tannins and total iridoid content were highest (2.3 mg CCE/g DW and 3.2 mg HE/g DW, respectively) in Cymbopogon nardus. The most common phenolic compounds in the grass species included ρ-coumaric, ferulic, salicylic and vanillic acids. In the DPPH radical scavenging assay, the EC50 values ranged from 0.02 to 0.11 mg/mL for the different grasses. The best EC50 activity (lowest) was exhibited by Cymbopogon nardus roots (0.02 mg/mL) and inflorescences (0.04 mg/mL), Cymbopogon spp. roots (0.04 mg/mL) and Vetiveria zizanioides leaves (0.06 mg/mL). The highest ferric-reducing power was detected in the whole plant extract of Cynodon dactylon (0.085 ± 0.45; r2 = 0.898). The observed antioxidant activity in the various parts of the grasses may be due to their rich pool of phytochemicals. Thus, some of these grasses provide a source of natural antioxidants and phytochemicals that can be explored for their therapeutic purposes.

Zobrazit více v PubMed

Palombo E.A. Phytochemicals from traditional medicinal plants used in the treatment of diarrhoea: Modes of action and effects on intestinal function. Phytother. Res. 2006;20:717–724. doi: 10.1002/ptr.1907. PubMed DOI

Zhao J., Davis L.C., Verpoorte R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol. Adv. 2005;23:283–333. doi: 10.1016/j.biotechadv.2005.01.003. PubMed DOI

Coley P.D. Interspecific variation in plant anti-herbivore properties: The role of habitat quality and rate of disturbance. New Phytol. 1987;106:251–263. doi: 10.1111/j.1469-8137.1987.tb04693.x. DOI

Avoseh O., Oyedeji O., Rungqu P., Nkeh-Chungag B., Oyedeji A. Cymbopogon species; ethnopharmacology, phytochemistry and the pharmacological importance. Molecules. 2015;20:7438–7453. doi: 10.3390/molecules20057438. PubMed DOI PMC

Crozier A., Jaganath I.B., Clifford M.N. Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet. Blackwell Publishing; Oxford, UK: 2006. Phenols, polyphenols and tannins: An overview.

Ford J., Gaoue O.G. Alkaloid-Poor Plant Families, Poaceae and Cyperaceae, Are Over-Utilized for Medicine in Hawaiian Pharmacopoeia. Econ. Bot. 2017;71:123–132. doi: 10.1007/s12231-017-9380-4. DOI

Moerman D.E. An analysis of the food plants and drug plants of native North America. J. Ethnopharmacol. 1996;52:1–22. doi: 10.1016/0378-8741(96)01393-1. PubMed DOI

Stepp J.R., Moerman D.E. The importance of weeds in ethnopharmacology. J. Ethnopharmacol. 2001;75:19–23. doi: 10.1016/S0378-8741(00)00385-8. PubMed DOI

Gebashe F., Aremu A., Finnie J., Van Staden J. Grasses in South African traditional medicine: A review of their biological activities and phytochemical content. S. Afr. J. Bot. 2019;122:301–329. doi: 10.1016/j.sajb.2018.10.012. DOI

Kähkönen M.P., Hopia A.I., Vuorela H.J., Rauha J.-P., Pihlaja K., Kujala T.S., Heinonen M. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 1999;47:3954–3962. doi: 10.1021/jf990146l. PubMed DOI

Middleton E., Kandaswami C., Theoharides T.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 2000;52:673–751. PubMed

Tundis R., Loizzo M.R., Menichini F., Statti G.A., Menichini F. Biological and pharmacological activities of iridoids: Recent developments. Mini Rev. Med. Chem. 2008;8:399–420. doi: 10.2174/138955708783955926. PubMed DOI

Chiang L.-C., Ng L.T., Chiang W., Chang M.-Y., Lin C.-C. Immunomodulatory activities of flavonoids, monoterpenoids, triterpenoids, iridoid glycosides and phenolic compounds of Plantago species. Planta Med. 2003;69:600–604. PubMed

Anderson K.J., Teuber S.S., Gobeille A., Cremin P., Waterhouse A.L., Steinberg F.M. Walnut polyphenolics inhibit in vitro human plasma and LDL oxidation. J. Nutr. 2001;131:2837–2842. doi: 10.1093/jn/131.11.2837. PubMed DOI

Rizk A.M., Hammouda F., Ismail S., Kamel A., Rimpler H. Constituents of plants growing in Qatar part xxvii: Flavonoids of Cymbopogon parkeri. Qatar Univ. Sci. J. 1995;15:33–35.

Cheel J., Theoduloz C., Rodríguez J., Schmeda-Hirschmann G. Free radical scavengers and antioxidants from Lemongrass (Cymbopogon citratus (DC.) Stapf.) J. Agric. Food Chem. 2005;53:2511–2517. doi: 10.1021/jf0479766. PubMed DOI

Chesselet P., Wolfson M.M., Ellis R. A comparative histochemical study of plant polyphenols in southern African grasses. Afr. J. Range For. Sci. 1992;9:119–125. doi: 10.1080/02566702.1992.9648311. DOI

Kolodziej H., Kiderlen A.F. Antileishmanial activity and immune modulatory effects of tannins and related compounds on Leishmania parasitised RAW 264.7 cells. Phytochemistry. 2005;66:2056–2071. doi: 10.1016/j.phytochem.2005.01.011. PubMed DOI

Gurib-Fakim A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol. Asp. Med. 2006;27:1–93. doi: 10.1016/j.mam.2005.07.008. PubMed DOI

Gebashe F., Moyo M., Aremu A., Finnie J., Van Staden J. Ethnobotanical survey and antibacterial screening of medicinal grasses in KwaZulu-Natal Province, South Africa. S. Afr. J. Bot. 2019;22:467–474. doi: 10.1016/j.sajb.2018.07.027. DOI

Hartley R.D., Morrison W.H. Monomeric and dimeric phenolic acids released from cell walls of grasses by sequential treatment with sodium hydroxide. J. Sci. Food Agric. 1991;55:365–375. doi: 10.1002/jsfa.2740550305. DOI

Kroon P.A., Williamson G. Hydroxycinnamates in plants and food: Current and future perspectives. J. Sci. Food Agric. 1999;79:355–361. doi: 10.1002/(SICI)1097-0010(19990301)79:3<355::AID-JSFA255>3.0.CO;2-G. DOI

Ou S., Li Y., Gao K. A study on scavenging activity of wheat bran dietary fiber for free radical. Acta Nutr. Sin. 1999;21:191–194.

Zhang Z., Yao S., Lin W., Wang W., Jin Y., Lin N. Mechanism of reaction of nitrogen dioxide radical with hydroxycinnamic acid derivatives: A pulse radiolysis study. Free Radic. Res. 1998;29:13–16. PubMed

Ou S., Kwok K.C. Ferulic acid: Pharmaceutical functions, preparation and applications in foods. J. Sci. Food Agric. 2004;84:1261–1269. doi: 10.1002/jsfa.1873. DOI

Rice-Evans C.A., Miller N.J., Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996;20:933–956. doi: 10.1016/0891-5849(95)02227-9. PubMed DOI

Cuvelier M.-E., Richard H., Berset C. Comparison of the antioxidative activity of some acid-phenols: Structure-activity relationship. Biosci. Biotechnol. Biochem. 1992;56:324–325. doi: 10.1271/bbb.56.324. DOI

Gülçin I. Antioxidant Activity of Food Constituents: An Overview. Arch. Toxicol. 2012;86:345–391. doi: 10.1007/s00204-011-0774-2. PubMed DOI

Alam M.N., Bristi N.J., Rafiquzzaman M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J. 2013;21:143–152. doi: 10.1016/j.jsps.2012.05.002. PubMed DOI PMC

Krishnaiah D., Sarbatly R., Nithyanandam R. A review of the antioxidant potential of medicinal plant species. Food Bioprod. Process. 2011;89:217–233. doi: 10.1016/j.fbp.2010.04.008. DOI

Shahidi F., Janitha P., Wanasundara P. Phenolic antioxidants. Crit. Rev. Food Sci. Nutr. 1992;32:67–103. doi: 10.1080/10408399209527581. PubMed DOI

Gerber M., Boutron-Ruault M.-C., Hercberg S., Riboli E., Scalbert A., Siess M.-H. Food and cancer: State of the art about the protective effect of fruits and vegetables. Bull. Cancer. 2002;89:293–312. PubMed

Matteo V., Esposito E. Biochemical and therapeutic effects of antioxidants in the treatment of Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. CNS Neurol. Disord. Drug Targets. 2003;2:95–107. doi: 10.2174/1568007033482959. PubMed DOI

Sreejayan N., Rao M. Free radical scavenging activity of Curcuminoids. Arzneimittelforschung. 1996;46:169–171. PubMed

Gbenou J.D., Ahounou J.F., Akakpo H.B., Laleye A., Yayi E., Gbaguidi F., Baba-Moussa L., Darboux R., Dansou P., Moudachirou M. Phytochemical composition of Cymbopogon citratus and Eucalyptus citriodora essential oils and their anti-inflammatory and analgesic properties on Wistar rats. Mol. Biol. Rep. 2013;40:1127–1134. doi: 10.1007/s11033-012-2155-1. PubMed DOI

Soares M.O., Alves R.C., Pires P.C., Oliveira M.B.P., Vinha A.F. Angolan Cymbopogon citratus used for therapeutic benefits: Nutritional composition and influence of solvents in phytochemicals content and antioxidant activity of leaf extracts. Food Chem. Toxicol. 2013;60:413–418. doi: 10.1016/j.fct.2013.07.064. PubMed DOI

Wojdyło A., Oszmiański J., Czemerys R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007;105:940–949. doi: 10.1016/j.foodchem.2007.04.038. DOI

Aremu A.O., Amoo S.O., Ndhlala A.R., Finnie J.F., Van Staden J. Antioxidant activity, acetylcholinesterase inhibition, iridoid content and mutagenic evaluation of Leucosidea sericea. Food Chem. Toxicol. 2011;49:1122–1128. doi: 10.1016/j.fct.2011.02.003. PubMed DOI

Cao G., Prior R.L. Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clin. Chem. 1998;44:1309–1315. doi: 10.1093/clinchem/44.6.1309. PubMed DOI

Huang D., Ou B., Prior R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005;53:1841–1856. doi: 10.1021/jf030723c. PubMed DOI

Prior R.L., Wu X., Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005;53:4290–4302. doi: 10.1021/jf0502698. PubMed DOI

Makkar H.P.S. Quantification of Tannins in Tree Foliage. A Laboratory Manual for the FAO/IAEA Coordinated Research Project on ‘Use of Nuclear and Related Techniques to Develop Simple Tannin Assay for Predicting and Improving the Safety and Efficiency of Feeding Ruminants on the Tanniniferous Tree Foliage’. Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture; Vienna, Austria: 1999. pp. 1–29.

Jia Z., Tang M., Wu J. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999;64:555–559. doi: 10.1016/S0308-8146(98)00102-2. DOI

Levieille G., Wilson G. In vitro propagation and iridoid analysis of the medicinal species Harpagophytum procumbens and H. zeyheri. Plant Cell Rep. 2002;21:220–225.

Haag-Berrurier M., Kuballa B., Anton R. Dosage des glucoiridoïdes totaux dans la racine d’Harpagophytum procumbens DC. Plant Med. Phytother. 1978;12:197–206.

Gruz J., Novák O., Strnad M. Rapid analysis of phenolic acids in beverages by UPLC–MS/MS. Food Chem. 2008;111:789–794. doi: 10.1016/j.foodchem.2008.05.014. DOI

Karioti A., Hadjipavlou-Litina D., Mensah M.L., Fleischer T.C., Skaltsa H. Composition and antioxidant activity of the essential oils of Xylopia aethiopica (Dun) A. Rich.(Annonaceae) leaves, stem bark, root bark, and fresh and dried fruits, growing in Ghana. J. Agric. Food Chem. 2004;52:8094–8098. doi: 10.1021/jf040150j. PubMed DOI

Lim T., Lim Y., Yule C. Evaluation of antioxidant, antibacterial and anti-tyrosinase activities of four Macaranga species. Food Chem. 2009;114:594–599. doi: 10.1016/j.foodchem.2008.09.093. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...