Gas-Liquid Contactors' Aeration Capacities When Agitated by Rushton Turbines of Various Diameters
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32201793
PubMed Central
PMC7081396
DOI
10.1021/acsomega.9b04005
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Mass transfer processes are one of the most important operations in chemical, biochemical, and food industries worldwide. In the processes that are controlled by the gas-liquid mass transfer rate, the volumetric mass transfer coefficient k L a becomes a crucial quantity. The dataset was measured with the aim to create a correlation for k L a prediction in a non-coalescent batch under the wide range of experimental conditions. The dynamic pressure method, which was reported as physically correct in the past, was chosen to be the method for experimental determination of k L a. Our previous work targeted the k L a dependencies in viscous and coalescent batches resulting in correlations that are viable for the broad range of process conditions. We reported that the best-fit correlation is based on the hydrodynamic parameter circumferential velocity of impeller blades in the case of non-coalescent liquids in the vessel equipped by single or multiple impellers at a constant D/T ratio (diameter of the impeller to the inner diameter of the tank). Now, we focus on the influence of various impeller diameters on transport characteristics (mainly k L a) in a non-coalescent batch. The experiments are carried out in a multiple-impeller vessel equipped with Rushton turbines (of four diameters) and in both laboratory and pilot-plant scales. Various impeller frequencies and gas flow rates are used. We examine the suitability of the hydrodynamic description, which was reported in the past, to predict k L a also when the D/T ratio changes. We show that the correlation based on the energy dissipation rate better fits the experimental data and predicts k L a values more accurately in the case of varying D/T values. This correlation could be adopted in the design and scale-up of agitated devices operating with non-coalescent batches.
Zobrazit více v PubMed
Markopoulos J.; Christofi C.; Katsinaris I. Mass Transfer Coefficients in Mechanically Agitated Gas-Liquid Contactors. Chem. Eng. Technol. 2007, 30, 829–834. 10.1002/ceat.200600394. DOI
Zlokarnik M.Scale-up in Chemical Engineering; 2 ed.; Wiley: Weinheim, 2006, 10.1002/352760815X. DOI
Takahashi K.; Nienow A. W. Bubble sizes and coalescence rates in an aerated vessel agitated by a Rushton turbine. J. Chem. Eng. Jpn. 1993, 26, 536–542. 10.1252/jcej.26.536. DOI
Zahradnik J.; Fialová M.; Linek V. The effect of surface-active additives on bubble coalescence in aqueous media. Chem. Eng. Sci. 1999, 54, 4757–4766. 10.1016/S0009-2509(99)00192-X. DOI
Del Castillo L. A.; Ohnishi S.; Horn R. G. Inhibition of bubble coalescence: Effects of salt concentration and speed of approach. J. Colloid Interface Sci. 2011, 356, 316–324. 10.1016/j.jcis.2010.12.057. PubMed DOI
Ranganathan P.; Sivaraman S. Investigations on hydrodynamics and mass transfer in gas-liquid stirred reactor using computational fluid dynamics. Chem. Eng. Sci. 2011, 66, 3108–3124. 10.1016/j.ces.2011.03.007. DOI
Linek V.; Sinkule J.; Beneš P. Critical assessment of gassing-In methods for measuringklain fermentors. Chem. Eng. Res. Des. 1991, 38, 323–330. 10.1002/bit.260380402. PubMed DOI
Linek V.; Sinkule J.; Benes P. Critical assessment of the dynamic double-response method for measuring kLa experimental elimination of dispersion effects. Chem. Eng. Sci. 1992, 47, 3885–3894. 10.1016/0009-2509(92)85137-Z. DOI
Linek V.; Beneš P.; Sinkule J. Critical-assessment of the steady-state Na2SO3 feeding method for kLa measurement in fermentors. Biotechnol. Bioeng. 1990, 35, 766–770. 10.1002/bit.260350803. PubMed DOI
Linek V.; Moucha T.; Rejl F. J.; Kordač M.; Hovorka F.; Opletal M.; Haidl J. Power and mass transfer correlations for design of multi-impeller gas-liquid contactors for non-coalescent electrolyte solutions. Chem. Eng. J. 2012, 209, 263–272. 10.1016/j.cej.2012.08.005. DOI
Seichter P. Power input of aerated agitator system of high-speed fermenter. Collect. Czech. Chem. Commun. 1987, 52, 2181–2187. 10.1135/cccc19872181. DOI
Petříček R.; Moucha T.; Jońaš Rejl F. J.; Valenz L.; Haidl J. Volumetric mass transfer coefficient in the fermenter agitated by Rushton turbines of various diameters in viscous batch. Int. J. Heat Mass Transfer 2017, 115, 856–866. 10.1016/j.ijheatmasstransfer.2017.07.112. DOI
Petříček R.; Moucha T.; Rejl J. F.; Valenz L.; Haidl J.; Čmelíková T. Volumetric mass transfer coefficient, Power input and Gas hold-up in viscous liquid in mechanically agitated fermenters. Measurements and scale-up. Int. J. Heat Mass Transfer 2018, 124, 1117–1135. 10.1016/j.ijheatmasstransfer.2018.04.045. DOI
Petříček R.; Moucha T.; Kracík T.; Rejl F. J.; Valenz L.; Haidl J. Volumetric mass transfer coefficient in the fermenter agitated by Rushton turbines of various diameters in coalescent batch. Int. J. Heat Mass Transfer 2019, 130, 968–977. 10.1016/j.ijheatmasstransfer.2018.10.123. DOI
Cooper C. M.; Fernstrom G. A.; Miller S. A. Correction - Performance of Agitated Gas-Liquid Contactors. Industrial & Engineering Chemistry 1944, 36, 857–857. 10.1021/ie50417a601. DOI
Puskeiler R.; Weuster-Botz D. Combined sulfite method for the measurement of the oxygen transfer coefficient kLa in bioreactors. J. Biotechnol. 2005, 120, 430–438. 10.1016/j.jbiotec.2005.06.016. PubMed DOI
Vilaça P. R.; Badino A. C. Jr.; Facciotti M. C. R.; Schmidell W. Determination of power consumption and volumetric oxygen transfer coefficient in bioreactors. Bioprocess Eng. 2000, 22, 0261–0265. 10.1007/s004490050730. DOI
Gezork K. M.; Bujalski W.; Cooke M.; Nienow A. W. Mass Transfer and Hold-up Characteristics in a Gassed, Stirred Vessel at Intensified Operating Conditions. Chem. Eng. Res. Des. 2001, 79, 965–972. 10.1205/02638760152721514. DOI
Fujasová M.; Linek V.; Moucha T. Mass transfer correlations for multiple-impeller gas-liquid contactors. Analysis of the effect of axial dispersion in gas and liquid phases on ″local″ k(L)a values measured by the dynamic pressure method in individual stages of the vessel. Chem. Eng. Sci. 2007, 62, 1650–1669. 10.1016/j.ces.2006.12.003. DOI
Moucha T.; Rejl F. J.; Kordač M.; Labík L. Mass transfer characteristics of multiple-impeller fermenters for their design and scale-up. Biochem. Eng. J. 2012, 69, 17–27. 10.1016/j.bej.2012.08.007. DOI
Labík L.; Moucha T.; Kordač M.; Rejl F. J.; Valenz L. Gas-Liquid Mass Transfer Rates and Impeller Power Consumptions for Industrial Vessel Design. Chem. Eng. Technol. 2015, 38, 1646–1653. 10.1002/ceat.201500209. DOI
Labík L.Study of gas-liquid mass transfer in a mechanically agitated fermentor . Department of chemical engineering. University of chemistry and technology, Prague., 2016.
Zlokarnik M. Sorption characteristics for gas-liquid contacting in mixing vessels. Biotechnol. 1978, 8, 133–151. 10.1007/3-540-08557-2_3. DOI
García-Ochoa F.; Castro E. G.; Santos V. E. Oxygen transfer and uptake rates during xanthan gum production. Enzyme Microb. Technol. 2000, 27, 680–690. 10.1016/S0141-0229(00)00272-6. PubMed DOI
Moucha T.; Linek V.; Erokhin K.; Rejl J. F.; Fujasová M. Improved power and mass transfer correlations for design and scale-up of multi-impeller gas–liquid contactors. Chem. Eng. Sci. 2009, 64, 598–604. 10.1016/j.ces.2008.10.043. DOI
Linek V.; Moucha T.; Dousova M.; Sinkule J. Measurement of k(L)a by dynamic pressure method in pilot-plant fermentor. Biotechnol. Bioeng. 1994, 43, 477–482. 10.1002/bit.260430607. PubMed DOI
Elgozali A., Ph.D. Thesis - Hydraulic Mass Transfer Characteristics of gas-liquid contactors with ejector distributor. University of hChemical Technology: Prague: 2001; p 86.