Genetic manipulation of LKB1 elicits lethal metastatic prostate cancer
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
336343
European Research Council - International
PubMed
32219437
PubMed Central
PMC7971141
DOI
10.1084/jem.20191787
PII: 151590
Knihovny.cz E-zdroje
- MeSH
- epitel enzymologie patologie MeSH
- fosfohydroláza PTEN metabolismus MeSH
- HEK293 buňky MeSH
- heterozygot MeSH
- kinasy AMP aktivovaných proteinkinas MeSH
- lidé MeSH
- metastázy nádorů MeSH
- mutantní proteiny metabolismus MeSH
- myši inbrední C57BL MeSH
- myši nahé MeSH
- nádorové buněčné linie MeSH
- nádory prostaty enzymologie MeSH
- progrese nemoci MeSH
- prostata enzymologie patologie MeSH
- protein-serin-threoninkinasy nedostatek genetika metabolismus MeSH
- proteinkinasy aktivované AMP MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfohydroláza PTEN MeSH
- kinasy AMP aktivovaných proteinkinas MeSH
- mutantní proteiny MeSH
- protein-serin-threoninkinasy MeSH
- proteinkinasy aktivované AMP MeSH
- STK11 protein, human MeSH Prohlížeč
- Stk11 protein, mouse MeSH Prohlížeč
Gene dosage is a key defining factor to understand cancer pathogenesis and progression, which requires the development of experimental models that aid better deconstruction of the disease. Here, we model an aggressive form of prostate cancer and show the unconventional association of LKB1 dosage to prostate tumorigenesis. Whereas loss of Lkb1 alone in the murine prostate epithelium was inconsequential for tumorigenesis, its combination with an oncogenic insult, illustrated by Pten heterozygosity, elicited lethal metastatic prostate cancer. Despite the low frequency of LKB1 deletion in patients, this event was significantly enriched in lung metastasis. Modeling the role of LKB1 in cellular systems revealed that the residual activity retained in a reported kinase-dead form, LKB1K78I, was sufficient to hamper tumor aggressiveness and metastatic dissemination. Our data suggest that prostate cells can function normally with low activity of LKB1, whereas its complete absence influences prostate cancer pathogenesis and dissemination.
Biochemistry and Molecular Biology Department University of the Basque Country Bilbao Spain
Center for Cooperative Research in Biosciences Basque Research and Technology Alliance Derio Spain
Childhood Leukaemia Investigation Prague Czech Republic
Grupo de Oncología Celular y Molecular Hospital Universitario 12 de Octubre Madrid Spain
Ikerbasque Basque Foundation for Science Bilbao Spain
Institució Catalana de Recerca i Estudis Avançats Barcelona Spain
Instituto de Investigaciones Sanitarias San Carlos Madrid Spain
The Institute of Cancer Research London UK
The Royal Marsden National Health Service Foundation Trust London UK
Zobrazit více v PubMed
Abida, W., Armenia J., Gopalan A., Brennan R., Walsh M., Barron D., Danila D., Rathkopf D., Morris M., Slovin S., et al. . 2017. Prospective Genomic Profiling of Prostate Cancer Across Disease States Reveals Germline and Somatic Alterations That May Affect Clinical Decision Making. JCO Precis. Oncol. 2017:PO.17.00029. PubMed PMC
Abida, W., Cyrta J., Heller G., Prandi D., Armenia J., Coleman I., Cieslik M., Benelli M., Robinson D., Van Allen E.M., et al. . 2019. Genomic correlates of clinical outcome in advanced prostate cancer. Proc. Natl. Acad. Sci. USA. 116:11428–11436. 10.1073/pnas.1902651116 PubMed DOI PMC
Agarwal, S., Hynes P.G., Tillman H.S., Lake R., Abou-Kheir W.G., Fang L., Casey O.M., Ameri A.H., Martin P.L., Yin J.J., et al. . 2015. Identification of Different Classes of Luminal Progenitor Cells within Prostate Tumors. Cell Rep. 13:2147–2158. 10.1016/j.celrep.2015.10.077 PubMed DOI PMC
Alimonti, A., Carracedo A., Clohessy J.G., Trotman L.C., Nardella C., Egia A., Salmena L., Sampieri K., Haveman W.J., Brogi E., et al. . 2010. Subtle variations in Pten dose determine cancer susceptibility. Nat. Genet. 42:454–458. 10.1038/ng.556 PubMed DOI PMC
Armenia, J., Wankowicz S.A.M., Liu D., Gao J., Kundra R., Reznik E., Chatila W.K., Chakravarty D., Han G.C., Coleman I., et al. . PCF/SU2C International Prostate Cancer Dream Team . 2018. The long tail of oncogenic drivers in prostate cancer. Nat. Genet. 50:645–651. 10.1038/s41588-018-0078-z PubMed DOI PMC
Arriaga, J.M., and Abate-Shen C.. 2019. Genetically Engineered Mouse Models of Prostate Cancer in the Postgenomic Era. Cold Spring Harb. Perspect. Med. 9:a030528. 10.1101/cshperspect.a030528 PubMed DOI PMC
Berger, A.H., Knudson A.G., and Pandolfi P.P.. 2011. A continuum model for tumour suppression. Nature. 476:163–169. 10.1038/nature10275 PubMed DOI PMC
Boudeau, J., Deak M., Lawlor M.A., Morrice N.A., and Alessi D.R.. 2003. Heat-shock protein 90 and Cdc37 interact with LKB1 and regulate its stability. Biochem. J. 370:849–857. 10.1042/bj20021813 PubMed DOI PMC
Brunnhoelzl, D., and Wang J.. 2018. Clinical features, treatment, prognosis, and outcome of 47 patients with pure squamous cell carcinoma of the prostate. J. Clin. Oncol. 36(6 suppl):7. 10.1200/JCO.2018.36.6_suppl.7 PubMed DOI
Cancer Genome Atlas Research Network . 2015. The Molecular Taxonomy of Primary Prostate Cancer. Cell. 163:1011–1025. 10.1016/j.cell.2015.10.025 PubMed DOI PMC
Carracedo, A., Weiss D., Leliaert A.K., Bhasin M., de Boer V.C., Laurent G., Adams A.C., Sundvall M., Song S.J., Ito K., et al. . 2012. A metabolic prosurvival role for PML in breast cancer. J. Clin. Invest. 122:3088–3100. 10.1172/JCI62129 PubMed DOI PMC
Cerami, E., Gao J., Dogrusoz U., Gross B.E., Sumer S.O., Aksoy B.A., Jacobsen A., Byrne C.J., Heuer M.L., Larsson E., et al. . 2012. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2:401–404. 10.1158/2159-8290.CD-12-0095 PubMed DOI PMC
Chang, A.J., Autio K.A., Roach M. III, and Scher H.I.. 2014. High-risk prostate cancer-classification and therapy. Nat. Rev. Clin. Oncol. 11:308–323. 10.1038/nrclinonc.2014.68 PubMed DOI PMC
Chen, Z., Trotman L.C., Shaffer D., Lin H.K., Dotan Z.A., Niki M., Koutcher J.A., Scher H.I., Ludwig T., Gerald W., et al. . 2005. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature. 436:725–730. 10.1038/nature03918 PubMed DOI PMC
Di Cristofano, A., Pesce B., Cordon-Cardo C., and Pandolfi P.P.. 1998. Pten is essential for embryonic development and tumour suppression. Nat. Genet. 19:348–355. 10.1038/1235 PubMed DOI
Ferraldeschi, R., Nava Rodrigues D., Riisnaes R., Miranda S., Figueiredo I., Rescigno P., Ravi P., Pezaro C., Omlin A., Lorente D., et al. . 2015. PTEN protein loss and clinical outcome from castration-resistant prostate cancer treated with abiraterone acetate. Eur. Urol. 67:795–802. 10.1016/j.eururo.2014.10.027 PubMed DOI PMC
Fraser, M., Sabelnykova V.Y., Yamaguchi T.N., Heisler L.E., Livingstone J., Huang V., Shiah Y.J., Yousif F., Lin X., Masella A.P., et al. . 2017. Genomic hallmarks of localized, non-indolent prostate cancer. Nature. 541:359–364. 10.1038/nature20788 PubMed DOI
Gao, J., Aksoy B.A., Dogrusoz U., Dresdner G., Gross B., Sumer S.O., Sun Y., Jacobsen A., Sinha R., Larsson E., et al. . 2013. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6:pl1. 10.1126/scisignal.2004088 PubMed DOI PMC
Gerhauser, C., Favero F., Risch T., Simon R., Feuerbach L., Assenov Y., Heckmann D., Sidiropoulos N., Waszak S.M., Hübschmann D., et al. . 2018. Molecular Evolution of Early-Onset Prostate Cancer Identifies Molecular Risk Markers and Clinical Trajectories. Cancer Cell. 34:996–1011.e8. 10.1016/j.ccell.2018.10.016 PubMed DOI PMC
Hollstein, P.E., Eichner L.J., Brun S.N., Kamireddy A., Svensson R.U., Vera L.I., Ross D.S., Rymoff T.J., Hutchins A., Galvez H.M., et al. . 2019. The AMPK-related kinases SIK1 and SIK3 mediate key tumor-suppressive effects of LKB1 in NSCLC. Cancer Discov. 9:1606–1627. 10.1158/2159-8290.CD-18-1261 PubMed DOI PMC
Huang, X., Wullschleger S., Shpiro N., McGuire V.A., Sakamoto K., Woods Y.L., McBurnie W., Fleming S., and Alessi D.R.. 2008. Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice. Biochem. J. 412:211–221. 10.1042/BJ20080557 PubMed DOI
Ikediobi, O.N., Davies H., Bignell G., Edkins S., Stevens C., O’Meara S., Santarius T., Avis T., Barthorpe S., Brackenbury L., et al. . 2006. Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Mol. Cancer Ther. 5:2606–2612. 10.1158/1535-7163.MCT-06-0433 PubMed DOI PMC
Imielinski, M., Berger A.H., Hammerman P.S., Hernandez B., Pugh T.J., Hodis E., Cho J., Suh J., Capelletti M., Sivachenko A., et al. . 2012. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell. 150:1107–1120. 10.1016/j.cell.2012.08.029 PubMed DOI PMC
Ireland, H., Kemp R., Houghton C., Howard L., Clarke A.R., Sansom O.J., and Winton D.J.. 2004. Inducible Cre-mediated control of gene expression in the murine gastrointestinal tract: effect of loss of beta-catenin. Gastroenterology. 126:1236–1246. 10.1053/j.gastro.2004.03.020 PubMed DOI
Ittmann, M., Huang J., Radaelli E., Martin P., Signoretti S., Sullivan R., Simons B.W., Ward J.M., Robinson B.D., Chu G.C., et al. . 2013. Animal models of human prostate cancer: the consensus report of the New York meeting of the Mouse Models of Human Cancers Consortium Prostate Pathology Committee. Cancer Res. 73:2718–2736. 10.1158/0008-5472.CAN-12-4213 PubMed DOI PMC
James, N.D., Spears M.R., Clarke N.W., Dearnaley D.P., De Bono J.S., Gale J., Hetherington J., Hoskin P.J., Jones R.J., Laing R., et al. . 2015. Survival with Newly Diagnosed Metastatic Prostate Cancer in the “Docetaxel Era”: Data from 917 Patients in the Control Arm of the STAMPEDE Trial (MRC PR08, CRUK/06/019). Eur. Urol. 67:1028–1038. 10.1016/j.eururo.2014.09.032 PubMed DOI
Jordan, E.J., Kim H.R., Arcila M.E., Barron D., Chakravarty D., Gao J., Chang M.T., Ni A., Kundra R., Jonsson P., et al. . 2017. Prospective Comprehensive Molecular Characterization of Lung Adenocarcinomas for Efficient Patient Matching to Approved and Emerging Therapies. Cancer Discov. 7:596–609. 10.1158/2159-8290.CD-16-1337 PubMed DOI PMC
Knudson, A.G. Jr. 1971. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl. Acad. Sci. USA. 68:820–823. 10.1073/pnas.68.4.820 PubMed DOI PMC
Kumar, A., Coleman I., Morrissey C., Zhang X., True L.D., Gulati R., Etzioni R., Bolouri H., Montgomery B., White T., et al. . 2016. Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat. Med. 22:369–378. 10.1038/nm.4053 PubMed DOI PMC
Li, G., Robinson G.W., Lesche R., Martinez-Diaz H., Jiang Z., Rozengurt N., Wagner K.U., Wu D.C., Lane T.F., Liu X., et al. . 2002. Conditional loss of PTEN leads to precocious development and neoplasia in the mammary gland. Development. 129:4159–4170. PubMed
Lizcano, J.M., Göransson O., Toth R., Deak M., Morrice N.A., Boudeau J., Hawley S.A., Udd L., Mäkelä T.P., Hardie D.G., and Alessi D.R.. 2004. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J. 23:833–843. 10.1038/sj.emboj.7600110 PubMed DOI PMC
Martin, P., Liu Y.N., Pierce R., Abou-Kheir W., Casey O., Seng V., Camacho D., Simpson R.M., and Kelly K.. 2011. Prostate epithelial Pten/TP53 loss leads to transformation of multipotential progenitors and epithelial to mesenchymal transition. Am. J. Pathol. 179:422–435. 10.1016/j.ajpath.2011.03.035 PubMed DOI PMC
Martín-Martín, N., Zabala-Letona A., Fernández-Ruiz S., Arreal L., Camacho L., Castillo-Martin M., Cortazar A.R., Torrano V., Astobiza I., Zúñiga-García P., et al. . 2018. PPARδ Elicits Ligand-Independent Repression of Trefoil Factor Family to Limit Prostate Cancer Growth. Cancer Res. 78:399–409. 10.1158/0008-5472.CAN-17-0908 PubMed DOI
Mateo, J., Carreira S., Sandhu S., Miranda S., Mossop H., Perez-Lopez R., Nava Rodrigues D., Robinson D., Omlin A., Tunariu N., et al. . 2015. DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer. N. Engl. J. Med. 373:1697–1708. 10.1056/NEJMoa1506859 PubMed DOI PMC
Momcilovic, M., and Shackelford D.B.. 2015. Targeting LKB1 in cancer - exposing and exploiting vulnerabilities. Br. J. Cancer. 113:574–584. 10.1038/bjc.2015.261 PubMed DOI PMC
Morgenstern, J.P., and Land H.. 1990. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 18:3587–3596. 10.1093/nar/18.12.3587 PubMed DOI PMC
Munoz, F., Franco P., Ciammella P., Clerico M., Giudici M., Filippi A.R., and Ricardi U.. 2007. Squamous cell carcinoma of the prostate: long-term survival after combined chemo-radiation. Radiat. Oncol. 2:15. 10.1186/1748-717X-2-15 PubMed DOI PMC
Murray, C.W., Brady J.J., Tsai M.K., Li C., Winters I.P., Tang R., Andrejka L., Ma R.K., Kunder C.A., Chu P., and Winslow M.M.. 2019. An Lkb1-Sik axis suppresses lung tumor growth and controls differentiation. Cancer Discov. 9:1590–1605. 10.1158/2159-8290.CD-18-1237 PubMed DOI PMC
Nardella, C., Carracedo A., Salmena L., and Pandolfi P.P.. 2010. Faithfull modeling of PTEN loss driven diseases in the mouse. Curr. Top. Microbiol. Immunol. 347:135–168. PubMed
Pearson, H.B., McCarthy A., Collins C.M., Ashworth A., and Clarke A.R.. 2008. Lkb1 deficiency causes prostate neoplasia in the mouse. Cancer Res. 68:2223–2232. 10.1158/0008-5472.CAN-07-5169 PubMed DOI
Seed, G., Yuan W., Mateo J., Carreira S., Bertan C., Lambros M., Boysen G., Ferraldeschi R., Miranda S., Figueiredo I., et al. . 2017. Gene Copy Number Estimation from Targeted Next-Generation Sequencing of Prostate Cancer Biopsies: Analytic Validation and Clinical Qualification. Clin. Cancer Res. 23:6070–6077. 10.1158/1078-0432.CCR-17-0972 PubMed DOI
Shappell, S.B., Thomas G.V., Roberts R.L., Herbert R., Ittmann M.M., Rubin M.A., Humphrey P.A., Sundberg J.P., Rozengurt N., Barrios R., et al. . 2004. Prostate pathology of genetically engineered mice: definitions and classification. The consensus report from the Bar Harbor meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee. Cancer Res. 64:2270–2305. 10.1158/0008-5472.CAN-03-0946 PubMed DOI
Shaw, R.J., Bardeesy N., Manning B.D., Lopez L., Kosmatka M., DePinho R.A., and Cantley L.C.. 2004. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell. 6:91–99. 10.1016/j.ccr.2004.06.007 PubMed DOI
Stambolic, V., Tsao M.S., Macpherson D., Suzuki A., Chapman W.B., and Mak T.W.. 2000. High incidence of breast and endometrial neoplasia resembling human Cowden syndrome in pten+/- mice. Cancer Res. 60:3605–3611. PubMed
Stewart, S.A., Dykxhoorn D.M., Palliser D., Mizuno H., Yu E.Y., An D.S., Sabatini D.M., Chen I.S., Hahn W.C., Sharp P.A., et al. . 2003. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA. 9:493–501. 10.1261/rna.2192803 PubMed DOI PMC
Subramanian, A., Tamayo P., Mootha V.K., Mukherjee S., Ebert B.L., Gillette M.A., Paulovich A., Pomeroy S.L., Golub T.R., Lander E.S., and Mesirov J.P.. 2005. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA. 102:15545–15550. 10.1073/pnas.0506580102 PubMed DOI PMC
Talevich, E., Shain A.H., Botton T., and Bastian B.C.. 2016. CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing. PLOS Comput. Biol. 12:e1004873. 10.1371/journal.pcbi.1004873 PubMed DOI PMC
Taylor, B.S., Schultz N., Hieronymus H., Gopalan A., Xiao Y., Carver B.S., Arora V.K., Kaushik P., Cerami E., Reva B., et al. . 2010. Integrative genomic profiling of human prostate cancer. Cancer Cell. 18:11–22. 10.1016/j.ccr.2010.05.026 PubMed DOI PMC
Torrano, V., Valcarcel-Jimenez L., Cortazar A.R., Liu X., Urosevic J., Castillo-Martin M., Fernández-Ruiz S., Morciano G., Caro-Maldonado A., Guiu M., et al. . 2016. The metabolic co-regulator PGC1α suppresses prostate cancer metastasis. Nat. Cell Biol. 18:645–656. 10.1038/ncb3357 PubMed DOI PMC
Trotman, L.C., Niki M., Dotan Z.A., Koutcher J.A., Di Cristofano A., Xiao A., Khoo A.S., Roy-Burman P., Greenberg N.M., Van Dyke T., et al. . 2003. Pten dose dictates cancer progression in the prostate. PLoS Biol. 1:E59. 10.1371/journal.pbio.0000059 PubMed DOI PMC
Turajlic, S., Xu H., Litchfield K., Rowan A., Chambers T., Lopez J.I., Nicol D., O’Brien T., Larkin J., Horswell S., et al. . TRACERx Renal Consortium . 2018. Tracking Cancer Evolution Reveals Constrained Routes to Metastases: TRACERx Renal. Cell. 173:581–594.e12. 10.1016/j.cell.2018.03.057 PubMed DOI PMC
Ugalde-Olano, A., Egia A., Fernández-Ruiz S., Loizaga-Iriarte A., Zuñiga-García P., Garcia S., Royo F., Lacasa-Viscasillas I., Castro E., Cortazar A.R., et al. . 2015. Methodological aspects of the molecular and histological study of prostate cancer: focus on PTEN. Methods. 77-78:25–30. 10.1016/j.ymeth.2015.02.005 PubMed DOI PMC
Weinstein, J.N., Collisson E.A., Mills G.B., Shaw K.R., Ozenberger B.A., Ellrott K., Shmulevich I., Sander C., and Stuart J.M.. Cancer Genome Atlas Research Network . 2013. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45:1113–1120. 10.1038/ng.2764 PubMed DOI PMC
Xie, Q., Liu Y., Cai T., Horton C., Stefanson J., and Wang Z.A.. 2017. Dissecting cell-type-specific roles of androgen receptor in prostate homeostasis and regeneration through lineage tracing. Nat. Commun. 8:14284. 10.1038/ncomms14284 PubMed DOI PMC
Xu, C., Fillmore C.M., Koyama S., Wu H., Zhao Y., Chen Z., Herter-Sprie G.S., Akbay E.A., Tchaicha J.H., Altabef A., et al. . 2014. Loss of Lkb1 and Pten leads to lung squamous cell carcinoma with elevated PD-L1 expression. Cancer Cell. 25:590–604. 10.1016/j.ccr.2014.03.033 PubMed DOI PMC