Upgraded Valorization of Biowaste: Laser-Assisted Synthesis of Pd/Calcium Lignosulfonate Nanocomposite for Hydrogen Storage and Environmental Remediation
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32226869
PubMed Central
PMC7098021
DOI
10.1021/acsomega.9b04149
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Laser ablation in liquid (LAL), one of the promising pathways to produce nanoparticles, is used herein for the modification of the abundant biowaste, calcium lignosulfonate (CLS), adorning it with palladium nanoparticles (Pd NPs). The ensuing Pd/CLS nanocomposite, fabricated via a simple stirring method, is deployed for hydrogen storage and environmental cleanup studies; a hydrogen storage capacity of about 5.8 C g-1 confirmed that Pd NPs serve as active sites for the adsorption of hydrogen. Additionally, the novel, sustainable, and reusable nanocomposite also exhibits superior catalytic activity toward the reduction of hexavalent chromium [Cr(VI)], 4-nitrophenol (4-NP), and methylene blue (MB) in an aqueous solution in a short time; the synthesized nanocatalyst could be reused for at least eight successive runs.
Department of Chemistry Faculty of Science University of Qom Qom 3716146611 Iran
Department of Physics Faculty of Science Bu Ali Sina University Hamedan 65174 Iran
Faculty of Chemistry Bu Ali Sina University Hamedan 6517838683 Iran
Zobrazit více v PubMed
Sevilla M.; Mokaya R. Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ. Sci. 2014, 7, 1250–1280. 10.1039/C3EE43525C. DOI
Gholami T.; Salavati-Niasari M.; Salehabadi A.; Amiri M.; Shabani-Nooshabadi M.; Rezaie M. Electrochemical hydrogen storage properties of NiAl2O4/NiO nanostructures using TiO2, SiO2 and graphene by auto-combustion method using green tea extract. Renewable Energy 2018, 115, 199–207. 10.1016/j.renene.2017.08.037. DOI
Grinberga L.; Hodakovska J.; Kleperis J.; Vaivars G.; Klavins J. Electrochemical hydrogen storage and usage aspects: Nickel electrode in acidic electrolyte. Russ. J. Electrochem. 2007, 43, 598–602. 10.1134/S1023193507050163. DOI
Gillet S.; Aguedo M.; Petitjean L.; Morais A. R. C.; da Costa Lopes A. M.; Łukasik R. M.; Anastas P. T. Lignin transformations for high value applications: towards targeted modifications using green chemistry. Green Chem. 2017, 19, 4200–4233. 10.1039/C7GC01479A. DOI
Varma R. S. Biomass-derived renewable carbonaceous materials for sustainable chemical and environmental applications. ACS Sustainable Chem. Eng. 2019, 7, 6458–6470. 10.1021/acssuschemeng.8b06550. DOI
Varma R. S. Greener and sustainable trends in synthesis of organics and nanomaterials. ACS Sustainable Chem. Eng. 2016, 4, 5866–5878. 10.1021/acssuschemeng.6b01623. PubMed DOI PMC
Gawluk K.; Modrzejwska-Sikorska A.; Rębiś T.; Milczarek G. Preparation of Manganese Lignosulfonate and Its Application as the Precursor of Nanostructured MnOx for Oxidative Electrocatalysis. Catalysts 2017, 7, 392.10.3390/catal7120392. DOI
Shen Q.; Zhang T.; Zhu M.-F. A comparison of the surface properties of lignin and sulfonated lignins by FTIR spectroscopy and wicking technique. Colloids Surf., A 2008, 320, 57–60. 10.1016/j.colsurfa.2008.01.012. DOI
Xiao S.; Tan Y.; Xu J.; Xiong C.; Wang X.; Su S. Lignosulfonate as dispersant for layered double hydroxide in nitrile–butadiene rubber composites. Appl. Clay Sci. 2014, 97–98, 91–95. 10.1016/j.clay.2014.05.009. DOI
Klapiszewski Ł.; Zdarta J.; Szatkowski T.; Wysokowski M.; Nowacka M.; Szwarc-Rzepka K.; Bartczak P.; Siwińska-Stefańska K.; Ehrlich H.; Jesionowski T. Silica/lignosulfonate hybrid materials: Preparation and characterization. Open Chem. 2014, 12, 719–735. 10.2478/s11532-014-0523-5. DOI
Ago M.; Borghei M.; Haataja J. S.; Rojas O. J. Mesoporous carbon soft-templated from lignin nanofiber networks: microphase separation boosts supercapacitance in conductive electrodes. RSC Adv. 2016, 6, 85802–85810. 10.1039/C6RA17536H. DOI
Honarpazhouh Y.; Astaraei F. R.; Naderi H. R.; Tavakoli O. Electrochemical hydrogen storage in Pd-coated porous silicon/graphene oxide. Int. J. Hydrogen Energy 2016, 41, 12175–12182. 10.1016/j.ijhydene.2016.05.241. DOI
Adams B. D.; Chen A. The role of palladium in a hydrogen economy. Mater. Today 2011, 14, 282–289. 10.1016/S1369-7021(11)70143-2. DOI
Łukaszewski M.; Soszko M.; Czerwiński A. Electrochemical methods of real surface area determination of noble metal electrodes–an overview. Int. J. Electrochem. Sci. 2016, 11, 4442–4469. 10.20964/2016.06.71. DOI
Yun S.; Oyama S. T. Correlations in palladium membranes for hydrogen separation: a review. J. Membr. Sci. 2011, 375, 28–45. 10.1016/j.memsci.2011.03.057. DOI
Blaser H. U.; Malan C.; Pugin B.; Spindler F.; Steiner H.; Studer M. Selective hydrogenation for fine chemicals: Recent trends and new developments. Adv. Synth. Catal. 2003, 345, 103–151. 10.1002/adsc.200390000. DOI
Wang M.; Zhang Y.; Jin C.; Li Z.; Chai T.; Zhu T. Fabrication of novel ternary heterojunctions of Pd/g-C3N4/Bi2MoO6 hollow microspheres for enhanced visible-light photocatalytic performance toward organic pollutant degradation. Sep. Purif. Technol. 2019, 211, 1–9. 10.1016/j.seppur.2018.09.061. DOI
Varma R. S. Journey on greener pathways: from the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation. Green Chem. 2014, 16, 2027–2041. 10.1039/c3gc42640h. DOI
Lebedev A.; Anariba F.; Li X.; Leng D. S. H.; Wu P. Rational design of visible-light-driven Pd-loaded α/β-Bi2O3 nanorods with exceptional cationic and anionic dye degradation properties. Sol. Energy 2019, 190, 531–542. 10.1016/j.solener.2019.08.015. DOI
Wang L.; Bian Z. Photocatalytic degradation of paracetamol on Pd-BiVO4 under visible light irradiation. Chemosphere 2020, 239, 12481510.1016/j.chemosphere.2019.124815. PubMed DOI
Omidvar A.; Jaleh B.; Nasrollahzadeh M.; Dasmeh H. R. Fabrication, characterization and application of GO/Fe3O4/Pd nanocomposite as a magnetically separable and reusable catalyst for the reduction of organic dyes. Chem. Eng. Res. Des. 2017, 121, 339–347. 10.1016/j.cherd.2017.03.026. DOI
Dai G. P.; Liu M.; Chen D. M.; Hou P. X.; Tong Y.; Cheng H. M. Electrochemical charge-discharge capacity of purified single-walled carbon nanotubes. Electrochem. Solid-State Lett. 2002, 5, E13–E15. 10.1149/1.1454549. DOI
Liu E.; Wang J.; Li J.; Shi C.; He C.; Du X.; Zhao N. Enhanced electrochemical hydrogen storage capacity of multi-walled carbon nanotubes by TiO2 decoration. Int. J. Hydrogen Energy 2011, 36, 6739–6743. 10.1016/j.ijhydene.2011.02.128. DOI
Wang H.; Zhu S.; Xu G.; Zhou W.; Li L.; Zhang D. H.; Ren N.; Xia K.; Shi C. Influence of ultrasonic vibration on percussion drilling performance for millisecond pulsed Nd: YAG laser. Opt. Laser Technol. 2018, 104, 133–139. 10.1016/j.optlastec.2018.02.023. DOI
Aditya T.; Pal A.; Pal T. Nitroarene reduction: a trusted model reaction to test nanoparticle catalysts. Chem. Commun. 2015, 51, 9410–9431. 10.1039/C5CC01131K. PubMed DOI
He S.; Niu H.; Zeng T.; Wang S.; Cai Y. A Facile and Efficient Method for Continuous Reduction of Nitroaromatic Compounds Through the Cyclic Transformation Between Fe(II)-complexes and Nano Zero–valent Iron. ChemistrySelect 2016, 1, 2821–2825. 10.1002/slct.201600407. DOI
Joseph T.; Kumar K. V.; Ramaswamy A.; Halligudi S. Au-Pt nanoparticles in amine functionalized MCM-41: Catalytic evaluation in hydrogenation reactions. Catal. Commun. 2007, 8, 629–634. 10.1016/j.catcom.2006.03.004. DOI
Yang X.; Zhong H.; Zhu Y.; Jiang H.; Shen J.; Huang J.; Li C. Highly efficient reusable catalyst based on silicon nanowire arrays decorated with copper nanoparticles. J. Mater. Chem. A 2014, 2, 9040–9047. 10.1039/c4ta00119b. DOI
Kalidhasan S.; Kumar A. S. K.; Rajesh V.; Rajesh N. The journey traversed in the remediation of hexavalent chromium and the road ahead toward greener alternatives-A perspective. Coord. Chem. Rev. 2016, 317, 157–166. 10.1016/j.ccr.2016.03.004. DOI
Fu G.-T.; Jiang X.; Wu R.; Wei S.-H.; Sun D.-M.; Tang Y.-W.; Lu T.-H.; Chen Y. Arginine-assisted synthesis and catalytic properties of single-crystalline palladium tetrapods. ACS Appl. Mater. Interfaces 2014, 6, 22790–22795. 10.1021/am506965f. PubMed DOI
Dandapat A.; Jana D.; De G. Pd nanoparticles supported mesoporous γ-Al2O3 film as a reusable catalyst for reduction of toxic CrVI to CrIII in aqueous solution. Appl. Catal., A 2011, 396, 34–39. 10.1016/j.apcata.2011.01.032. DOI
Darabdhara G.; Das M. R. Bimetallic Au-Pd nanoparticles on 2D supported graphitic carbon nitride and reduced graphene oxide sheets: A comparative photocatalytic degradation study of organic pollutants in water. Chemosphere 2018, 197, 817–829. 10.1016/j.chemosphere.2018.01.073. PubMed DOI
Jaleh B.; Karami S.; Sajjadi M.; Feizi Mohazzab B.; Azizian S.; Nasrollahzadeh M.; Varma R. S. Laser-assisted preparation of Pd nanoparticles on carbon cloth for the degradation of environmental pollutants in aqueous medium. Chemosphere 2020, 246, 12575510.1016/j.chemosphere.2019.125755. PubMed DOI
Shahna F. G.; Bahrami A.; Alimohammadi I.; Yarahmadi R.; Jaleh B.; Gandomi M.; Ebrahimi H.; Abedi K. A.-D. Chlorobenzene degradation by non-thermal plasma combined with EG-TiO2/ZnO as a photocatalyst: Effect of photocatalyst on CO2 selectivity and byproducts reduction. J. Hazard. Mater. 2017, 324, 544–553. 10.1016/j.jhazmat.2016.11.025. PubMed DOI
Jafari S.; Azizian S.; Jaleh B. Enhancement of methyl violet removal by modification of TiO2 nanoparticles with AgI. J. Ind. Eng. Chem. 2012, 18, 2124–2128. 10.1016/j.jiec.2012.06.006. DOI
Haghighatzadeh A.; Mazinani B.; Shokouhimehr M.; Samiee L. Preparation mesoporous TiO2-SiO2 by ultrasonic impregnation method and effect of its calcination temperature on photocatalytic activity. Desalin. Water Treat. 2017, 92, 145–151. 10.5004/dwt.2017.21481. DOI
Choi K.-H.; Shokouhimehr M.; Kang Y. S.; Chung D. Y.; Chung Y.-H.; Ahn M.; Sung Y.-E. Preparation and characterization of palladium nanoparticles supported on nickel hexacyanoferrate for fuel cell application. Bull. Korean Chem. Soc. 2013, 34, 1195–1198. 10.5012/bkcs.2013.34.4.1195. DOI
Moon C. W.; Park J.; Hong S.-P.; Sohn W.; Andoshe D. M.; Shokouhimehr M.; Jang H. W. Decoration of metal oxide surface with {111} form Au nanoparticles using PEGylation. RSC Adv. 2018, 8, 18442–18450. 10.1039/C8RA03523G. PubMed DOI PMC
Feizi Mohazzab B.; Jaleh B.; Kakuee O.; Fattah-alhosseini A. Formation of titanium carbide on the titanium surface using laser ablation in n-heptane and investigating its corrosion resistance. Appl. Surf. Sci. 2019, 478, 623–635. 10.1016/j.apsusc.2019.01.259. DOI
Feizi Mohazzab B.; Jaleh B.; Nasrollahzadeh M.; Issaabadi Z.; Varma R. S. Laser ablation-assisted synthesis of GO/TiO2/Au nanocomposite: Applications in K3[Fe(CN)6] and Nigrosin reduction. Mol. Catal. 2019, 473, 11040110.1016/j.mcat.2019.110401. DOI
Vaziri M. R.; Omidvar A.; Jaleh B.; Shabestari N. P. Investigating the extrinsic size effect of palladium and gold spherical nanoparticles. Opt. Mater. 2017, 64, 413–420. 10.1016/j.optmat.2017.01.014. DOI
Feizi Mohazzab B.; Jaleh B.; Issaabadi Z.; Nasrollahzadeh M.; Varma R. S. Stainless steel mesh-GO/Pd NPs: catalytic applications of Suzuki-Miyaura and Stille coupling reactions in eco-friendly media. Green Chem. 2019, 21, 3319–3327. 10.1039/C9GC00889F. DOI
Mehrabi M.; Parvin P.; Reyhani A.; Mortazavi S. Hydrogen storage in multi-walled carbon nanotubes decorated with palladium nanoparticles using laser ablation/chemical reduction methods. Mater. Res. Express 2017, 4, 09503010.1088/2053-1591/aa87f6. DOI
Guo G.; Huang H.; Xue F.; Liu C.; Yu H.; Quan X.; Dong X. Electrochemical hydrogen storage of the graphene sheets prepared by DC arc-discharge method. Surf. Coat. Technol. 2013, 228, S120–S125. 10.1016/j.surfcoat.2012.07.016. DOI
Babel K.; Janasiak D.; Jurewicz K. Electrochemical hydrogen storage in activated carbons with different pore structures derived from certain lignocellulose materials. Carbon 2012, 50, 5017–5026. 10.1016/j.carbon.2012.06.030. DOI
Li C.; Wang H.; Naghadeh S. B.; Zhang J. Z.; Fang P. Visible light driven hydrogen evolution by photocatalytic reforming of lignin and lactic acid using one-dimensional NiS/CdS nanostructures. Appl. Catal., B 2018, 227, 229–239. 10.1016/j.apcatb.2018.01.038. DOI
Bragg W. H.; Bragg W. L. The reflection of X-rays by crystals. Proc. R. Soc. London, Ser. A 1913, 88, 428–438. 10.1098/rspa.1913.0040. DOI
Scherrer P.Determination of the Internal Structure and Size of Colloid Particles by X-rays. In Colloid Chemistry a Textbook; Springer, 1912; pp 387–409.
Sarkanen K. V.; Ludwig C. H. Lignins: Occurrence, formation, structure, and reactions. J. Polym. Sci., Part B: Polym. Lett. 1971, 10, 228–230. 10.1002/pol.1972.110100315. DOI
Said A. E.-A. A.; El-Wahab M. M. A.; El-Aal M. A. Catalytic dehydration of methanol to dimethyl ether over nanosized WO3/Al2O3 system under inert and oxidative atmosphere. Monatsh. Chem. 2016, 147, 1507–1516. 10.1007/s00706-015-1649-7. DOI
Al-Attafi K.; Nattestad A.; Yamauchi Y.; Dou S. X.; Kim J. H. Aggregated mesoporous nanoparticles for high surface area light scattering layer TiO2 photoanodes in Dye-sensitized Solar Cells. Sci. Rep. 2017, 7, 1034110.1038/s41598-017-09911-w. PubMed DOI PMC
Reyhani A.; Mortazavi S. Z.; Mirershadi S.; Golikand A. N.; Moshfegh A. Z. H2 adsorption mechanism in Mg modified multi-walled carbon nanotubes for hydrogen storage. Int. J. Hydrogen Energy 2012, 37, 1919–1926. 10.1016/j.ijhydene.2011.05.085. DOI
Chen F.; Yao H.; Fan P.; Yang J.; Zhong M. The characterizations and electrochemical properties of lignosulfonate templates based mesoporous NiO. AIP Conf. Proc. 2013, 121–124. 10.1063/1.4811882. DOI
Nart F.; Vielstich W.. Noramlization of Porous Active Surfaces. In Handbook of Fuel Cells; John Wiley & Sons Ltd., 2010.