Upgraded Valorization of Biowaste: Laser-Assisted Synthesis of Pd/Calcium Lignosulfonate Nanocomposite for Hydrogen Storage and Environmental Remediation

. 2020 Mar 24 ; 5 (11) : 5888-5899. [epub] 20200311

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32226869

Laser ablation in liquid (LAL), one of the promising pathways to produce nanoparticles, is used herein for the modification of the abundant biowaste, calcium lignosulfonate (CLS), adorning it with palladium nanoparticles (Pd NPs). The ensuing Pd/CLS nanocomposite, fabricated via a simple stirring method, is deployed for hydrogen storage and environmental cleanup studies; a hydrogen storage capacity of about 5.8 C g-1 confirmed that Pd NPs serve as active sites for the adsorption of hydrogen. Additionally, the novel, sustainable, and reusable nanocomposite also exhibits superior catalytic activity toward the reduction of hexavalent chromium [Cr(VI)], 4-nitrophenol (4-NP), and methylene blue (MB) in an aqueous solution in a short time; the synthesized nanocatalyst could be reused for at least eight successive runs.

Erratum v

PubMed

Zobrazit více v PubMed

Sevilla M.; Mokaya R. Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ. Sci. 2014, 7, 1250–1280. 10.1039/C3EE43525C. DOI

Gholami T.; Salavati-Niasari M.; Salehabadi A.; Amiri M.; Shabani-Nooshabadi M.; Rezaie M. Electrochemical hydrogen storage properties of NiAl2O4/NiO nanostructures using TiO2, SiO2 and graphene by auto-combustion method using green tea extract. Renewable Energy 2018, 115, 199–207. 10.1016/j.renene.2017.08.037. DOI

Grinberga L.; Hodakovska J.; Kleperis J.; Vaivars G.; Klavins J. Electrochemical hydrogen storage and usage aspects: Nickel electrode in acidic electrolyte. Russ. J. Electrochem. 2007, 43, 598–602. 10.1134/S1023193507050163. DOI

Gillet S.; Aguedo M.; Petitjean L.; Morais A. R. C.; da Costa Lopes A. M.; Łukasik R. M.; Anastas P. T. Lignin transformations for high value applications: towards targeted modifications using green chemistry. Green Chem. 2017, 19, 4200–4233. 10.1039/C7GC01479A. DOI

Varma R. S. Biomass-derived renewable carbonaceous materials for sustainable chemical and environmental applications. ACS Sustainable Chem. Eng. 2019, 7, 6458–6470. 10.1021/acssuschemeng.8b06550. DOI

Varma R. S. Greener and sustainable trends in synthesis of organics and nanomaterials. ACS Sustainable Chem. Eng. 2016, 4, 5866–5878. 10.1021/acssuschemeng.6b01623. PubMed DOI PMC

Gawluk K.; Modrzejwska-Sikorska A.; Rębiś T.; Milczarek G. Preparation of Manganese Lignosulfonate and Its Application as the Precursor of Nanostructured MnOx for Oxidative Electrocatalysis. Catalysts 2017, 7, 392.10.3390/catal7120392. DOI

Shen Q.; Zhang T.; Zhu M.-F. A comparison of the surface properties of lignin and sulfonated lignins by FTIR spectroscopy and wicking technique. Colloids Surf., A 2008, 320, 57–60. 10.1016/j.colsurfa.2008.01.012. DOI

Xiao S.; Tan Y.; Xu J.; Xiong C.; Wang X.; Su S. Lignosulfonate as dispersant for layered double hydroxide in nitrile–butadiene rubber composites. Appl. Clay Sci. 2014, 97–98, 91–95. 10.1016/j.clay.2014.05.009. DOI

Klapiszewski Ł.; Zdarta J.; Szatkowski T.; Wysokowski M.; Nowacka M.; Szwarc-Rzepka K.; Bartczak P.; Siwińska-Stefańska K.; Ehrlich H.; Jesionowski T. Silica/lignosulfonate hybrid materials: Preparation and characterization. Open Chem. 2014, 12, 719–735. 10.2478/s11532-014-0523-5. DOI

Ago M.; Borghei M.; Haataja J. S.; Rojas O. J. Mesoporous carbon soft-templated from lignin nanofiber networks: microphase separation boosts supercapacitance in conductive electrodes. RSC Adv. 2016, 6, 85802–85810. 10.1039/C6RA17536H. DOI

Honarpazhouh Y.; Astaraei F. R.; Naderi H. R.; Tavakoli O. Electrochemical hydrogen storage in Pd-coated porous silicon/graphene oxide. Int. J. Hydrogen Energy 2016, 41, 12175–12182. 10.1016/j.ijhydene.2016.05.241. DOI

Adams B. D.; Chen A. The role of palladium in a hydrogen economy. Mater. Today 2011, 14, 282–289. 10.1016/S1369-7021(11)70143-2. DOI

Łukaszewski M.; Soszko M.; Czerwiński A. Electrochemical methods of real surface area determination of noble metal electrodes–an overview. Int. J. Electrochem. Sci. 2016, 11, 4442–4469. 10.20964/2016.06.71. DOI

Yun S.; Oyama S. T. Correlations in palladium membranes for hydrogen separation: a review. J. Membr. Sci. 2011, 375, 28–45. 10.1016/j.memsci.2011.03.057. DOI

Blaser H. U.; Malan C.; Pugin B.; Spindler F.; Steiner H.; Studer M. Selective hydrogenation for fine chemicals: Recent trends and new developments. Adv. Synth. Catal. 2003, 345, 103–151. 10.1002/adsc.200390000. DOI

Wang M.; Zhang Y.; Jin C.; Li Z.; Chai T.; Zhu T. Fabrication of novel ternary heterojunctions of Pd/g-C3N4/Bi2MoO6 hollow microspheres for enhanced visible-light photocatalytic performance toward organic pollutant degradation. Sep. Purif. Technol. 2019, 211, 1–9. 10.1016/j.seppur.2018.09.061. DOI

Varma R. S. Journey on greener pathways: from the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation. Green Chem. 2014, 16, 2027–2041. 10.1039/c3gc42640h. DOI

Lebedev A.; Anariba F.; Li X.; Leng D. S. H.; Wu P. Rational design of visible-light-driven Pd-loaded α/β-Bi2O3 nanorods with exceptional cationic and anionic dye degradation properties. Sol. Energy 2019, 190, 531–542. 10.1016/j.solener.2019.08.015. DOI

Wang L.; Bian Z. Photocatalytic degradation of paracetamol on Pd-BiVO4 under visible light irradiation. Chemosphere 2020, 239, 12481510.1016/j.chemosphere.2019.124815. PubMed DOI

Omidvar A.; Jaleh B.; Nasrollahzadeh M.; Dasmeh H. R. Fabrication, characterization and application of GO/Fe3O4/Pd nanocomposite as a magnetically separable and reusable catalyst for the reduction of organic dyes. Chem. Eng. Res. Des. 2017, 121, 339–347. 10.1016/j.cherd.2017.03.026. DOI

Dai G. P.; Liu M.; Chen D. M.; Hou P. X.; Tong Y.; Cheng H. M. Electrochemical charge-discharge capacity of purified single-walled carbon nanotubes. Electrochem. Solid-State Lett. 2002, 5, E13–E15. 10.1149/1.1454549. DOI

Liu E.; Wang J.; Li J.; Shi C.; He C.; Du X.; Zhao N. Enhanced electrochemical hydrogen storage capacity of multi-walled carbon nanotubes by TiO2 decoration. Int. J. Hydrogen Energy 2011, 36, 6739–6743. 10.1016/j.ijhydene.2011.02.128. DOI

Wang H.; Zhu S.; Xu G.; Zhou W.; Li L.; Zhang D. H.; Ren N.; Xia K.; Shi C. Influence of ultrasonic vibration on percussion drilling performance for millisecond pulsed Nd: YAG laser. Opt. Laser Technol. 2018, 104, 133–139. 10.1016/j.optlastec.2018.02.023. DOI

Aditya T.; Pal A.; Pal T. Nitroarene reduction: a trusted model reaction to test nanoparticle catalysts. Chem. Commun. 2015, 51, 9410–9431. 10.1039/C5CC01131K. PubMed DOI

He S.; Niu H.; Zeng T.; Wang S.; Cai Y. A Facile and Efficient Method for Continuous Reduction of Nitroaromatic Compounds Through the Cyclic Transformation Between Fe(II)-complexes and Nano Zero–valent Iron. ChemistrySelect 2016, 1, 2821–2825. 10.1002/slct.201600407. DOI

Joseph T.; Kumar K. V.; Ramaswamy A.; Halligudi S. Au-Pt nanoparticles in amine functionalized MCM-41: Catalytic evaluation in hydrogenation reactions. Catal. Commun. 2007, 8, 629–634. 10.1016/j.catcom.2006.03.004. DOI

Yang X.; Zhong H.; Zhu Y.; Jiang H.; Shen J.; Huang J.; Li C. Highly efficient reusable catalyst based on silicon nanowire arrays decorated with copper nanoparticles. J. Mater. Chem. A 2014, 2, 9040–9047. 10.1039/c4ta00119b. DOI

Kalidhasan S.; Kumar A. S. K.; Rajesh V.; Rajesh N. The journey traversed in the remediation of hexavalent chromium and the road ahead toward greener alternatives-A perspective. Coord. Chem. Rev. 2016, 317, 157–166. 10.1016/j.ccr.2016.03.004. DOI

Fu G.-T.; Jiang X.; Wu R.; Wei S.-H.; Sun D.-M.; Tang Y.-W.; Lu T.-H.; Chen Y. Arginine-assisted synthesis and catalytic properties of single-crystalline palladium tetrapods. ACS Appl. Mater. Interfaces 2014, 6, 22790–22795. 10.1021/am506965f. PubMed DOI

Dandapat A.; Jana D.; De G. Pd nanoparticles supported mesoporous γ-Al2O3 film as a reusable catalyst for reduction of toxic CrVI to CrIII in aqueous solution. Appl. Catal., A 2011, 396, 34–39. 10.1016/j.apcata.2011.01.032. DOI

Darabdhara G.; Das M. R. Bimetallic Au-Pd nanoparticles on 2D supported graphitic carbon nitride and reduced graphene oxide sheets: A comparative photocatalytic degradation study of organic pollutants in water. Chemosphere 2018, 197, 817–829. 10.1016/j.chemosphere.2018.01.073. PubMed DOI

Jaleh B.; Karami S.; Sajjadi M.; Feizi Mohazzab B.; Azizian S.; Nasrollahzadeh M.; Varma R. S. Laser-assisted preparation of Pd nanoparticles on carbon cloth for the degradation of environmental pollutants in aqueous medium. Chemosphere 2020, 246, 12575510.1016/j.chemosphere.2019.125755. PubMed DOI

Shahna F. G.; Bahrami A.; Alimohammadi I.; Yarahmadi R.; Jaleh B.; Gandomi M.; Ebrahimi H.; Abedi K. A.-D. Chlorobenzene degradation by non-thermal plasma combined with EG-TiO2/ZnO as a photocatalyst: Effect of photocatalyst on CO2 selectivity and byproducts reduction. J. Hazard. Mater. 2017, 324, 544–553. 10.1016/j.jhazmat.2016.11.025. PubMed DOI

Jafari S.; Azizian S.; Jaleh B. Enhancement of methyl violet removal by modification of TiO2 nanoparticles with AgI. J. Ind. Eng. Chem. 2012, 18, 2124–2128. 10.1016/j.jiec.2012.06.006. DOI

Haghighatzadeh A.; Mazinani B.; Shokouhimehr M.; Samiee L. Preparation mesoporous TiO2-SiO2 by ultrasonic impregnation method and effect of its calcination temperature on photocatalytic activity. Desalin. Water Treat. 2017, 92, 145–151. 10.5004/dwt.2017.21481. DOI

Choi K.-H.; Shokouhimehr M.; Kang Y. S.; Chung D. Y.; Chung Y.-H.; Ahn M.; Sung Y.-E. Preparation and characterization of palladium nanoparticles supported on nickel hexacyanoferrate for fuel cell application. Bull. Korean Chem. Soc. 2013, 34, 1195–1198. 10.5012/bkcs.2013.34.4.1195. DOI

Moon C. W.; Park J.; Hong S.-P.; Sohn W.; Andoshe D. M.; Shokouhimehr M.; Jang H. W. Decoration of metal oxide surface with {111} form Au nanoparticles using PEGylation. RSC Adv. 2018, 8, 18442–18450. 10.1039/C8RA03523G. PubMed DOI PMC

Feizi Mohazzab B.; Jaleh B.; Kakuee O.; Fattah-alhosseini A. Formation of titanium carbide on the titanium surface using laser ablation in n-heptane and investigating its corrosion resistance. Appl. Surf. Sci. 2019, 478, 623–635. 10.1016/j.apsusc.2019.01.259. DOI

Feizi Mohazzab B.; Jaleh B.; Nasrollahzadeh M.; Issaabadi Z.; Varma R. S. Laser ablation-assisted synthesis of GO/TiO2/Au nanocomposite: Applications in K3[Fe(CN)6] and Nigrosin reduction. Mol. Catal. 2019, 473, 11040110.1016/j.mcat.2019.110401. DOI

Vaziri M. R.; Omidvar A.; Jaleh B.; Shabestari N. P. Investigating the extrinsic size effect of palladium and gold spherical nanoparticles. Opt. Mater. 2017, 64, 413–420. 10.1016/j.optmat.2017.01.014. DOI

Feizi Mohazzab B.; Jaleh B.; Issaabadi Z.; Nasrollahzadeh M.; Varma R. S. Stainless steel mesh-GO/Pd NPs: catalytic applications of Suzuki-Miyaura and Stille coupling reactions in eco-friendly media. Green Chem. 2019, 21, 3319–3327. 10.1039/C9GC00889F. DOI

Mehrabi M.; Parvin P.; Reyhani A.; Mortazavi S. Hydrogen storage in multi-walled carbon nanotubes decorated with palladium nanoparticles using laser ablation/chemical reduction methods. Mater. Res. Express 2017, 4, 09503010.1088/2053-1591/aa87f6. DOI

Guo G.; Huang H.; Xue F.; Liu C.; Yu H.; Quan X.; Dong X. Electrochemical hydrogen storage of the graphene sheets prepared by DC arc-discharge method. Surf. Coat. Technol. 2013, 228, S120–S125. 10.1016/j.surfcoat.2012.07.016. DOI

Babel K.; Janasiak D.; Jurewicz K. Electrochemical hydrogen storage in activated carbons with different pore structures derived from certain lignocellulose materials. Carbon 2012, 50, 5017–5026. 10.1016/j.carbon.2012.06.030. DOI

Li C.; Wang H.; Naghadeh S. B.; Zhang J. Z.; Fang P. Visible light driven hydrogen evolution by photocatalytic reforming of lignin and lactic acid using one-dimensional NiS/CdS nanostructures. Appl. Catal., B 2018, 227, 229–239. 10.1016/j.apcatb.2018.01.038. DOI

Bragg W. H.; Bragg W. L. The reflection of X-rays by crystals. Proc. R. Soc. London, Ser. A 1913, 88, 428–438. 10.1098/rspa.1913.0040. DOI

Scherrer P.Determination of the Internal Structure and Size of Colloid Particles by X-rays. In Colloid Chemistry a Textbook; Springer, 1912; pp 387–409.

Sarkanen K. V.; Ludwig C. H. Lignins: Occurrence, formation, structure, and reactions. J. Polym. Sci., Part B: Polym. Lett. 1971, 10, 228–230. 10.1002/pol.1972.110100315. DOI

Said A. E.-A. A.; El-Wahab M. M. A.; El-Aal M. A. Catalytic dehydration of methanol to dimethyl ether over nanosized WO3/Al2O3 system under inert and oxidative atmosphere. Monatsh. Chem. 2016, 147, 1507–1516. 10.1007/s00706-015-1649-7. DOI

Al-Attafi K.; Nattestad A.; Yamauchi Y.; Dou S. X.; Kim J. H. Aggregated mesoporous nanoparticles for high surface area light scattering layer TiO2 photoanodes in Dye-sensitized Solar Cells. Sci. Rep. 2017, 7, 1034110.1038/s41598-017-09911-w. PubMed DOI PMC

Reyhani A.; Mortazavi S. Z.; Mirershadi S.; Golikand A. N.; Moshfegh A. Z. H2 adsorption mechanism in Mg modified multi-walled carbon nanotubes for hydrogen storage. Int. J. Hydrogen Energy 2012, 37, 1919–1926. 10.1016/j.ijhydene.2011.05.085. DOI

Chen F.; Yao H.; Fan P.; Yang J.; Zhong M. The characterizations and electrochemical properties of lignosulfonate templates based mesoporous NiO. AIP Conf. Proc. 2013, 121–124. 10.1063/1.4811882. DOI

Nart F.; Vielstich W.. Noramlization of Porous Active Surfaces. In Handbook of Fuel Cells; John Wiley & Sons Ltd., 2010.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...