ProteinVR: Web-based molecular visualization in virtual reality
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 GM132353
NIGMS NIH HHS - United States
PubMed
32231351
PubMed Central
PMC7147804
DOI
10.1371/journal.pcbi.1007747
PII: PCOMPBIOL-D-19-02007
Knihovny.cz E-zdroje
- MeSH
- internet * MeSH
- konformace proteinů MeSH
- proteiny * chemie ultrastruktura MeSH
- virtuální realita * MeSH
- výpočetní biologie metody MeSH
- zobrazování trojrozměrné metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- proteiny * MeSH
Protein structure determines biological function. Accurately conceptualizing 3D protein/ligand structures is thus vital to scientific research and education. Virtual reality (VR) enables protein visualization in stereoscopic 3D, but many VR molecular-visualization programs are expensive and challenging to use; work only on specific VR headsets; rely on complicated model-preparation software; and/or require the user to install separate programs or plugins. Here we introduce ProteinVR, a web-based application that works on various VR setups and operating systems. ProteinVR displays molecular structures within 3D environments that give useful biological context and allow users to situate themselves in 3D space. Our web-based implementation is ideal for hypothesis generation and education in research and large-classroom settings. We release ProteinVR under the open-source BSD-3-Clause license. A copy of the program is available free of charge from http://durrantlab.com/protein-vr/, and a working version can be accessed at http://durrantlab.com/pvr/.
Zobrazit více v PubMed
Nakano CM, Moen E, Byun HS, Ma H, Newman B, McDowell A, et al. iBET: Immersive visualization of biological electron-transfer dynamics. J Mol Graph Model. 2016;65:94–9. 10.1016/j.jmgm.2016.02.009 PubMed DOI
Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. Journal of Molecular Graphics. 1996;14(1):33–38. 10.1016/0263-7855(96)00018-5 PubMed DOI
DeLano WL. Pymol: An open-source molecular graphics tool. CCP4 Newsletter On Protein Crystallography. 2002;40:82–92.
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry. 2004;25(13):1605–1612. 10.1002/jcc.20084 PubMed DOI
Rego N, Koes D. 3Dmol.js: molecular visualization with WebGL. Bioinformatics. 2015;31(8):1322–4. 10.1093/bioinformatics/btu829 PubMed DOI PMC
Rose AS, Hildebrand PW. NGL Viewer: a web application for molecular visualization. Nucleic Acids Res. 2015;43(W1):W576–9. 10.1093/nar/gkv402 PubMed DOI PMC
Norrby M, Grebner C, Eriksson J, Bostrom J. Molecular Rift: Virtual Reality for Drug Designers. Journal of Chemical Information and Modeling. 2015;55(11):2475–2484. 10.1021/acs.jcim.5b00544 PubMed DOI
Ratamero EM, Bellini D, Dowson CG, Romer RA. Touching proteins with virtual bare hands: Visualizing protein-drug complexes and their dynamics in self-made virtual reality using gaming hardware. J Comput Aided Mol Des. 2018;32(6):703–709. 10.1007/s10822-018-0123-0 PubMed DOI PMC
Grebner C, Norrby M, Enstrom J, Nilsson I, Hogner A, Henriksson J, et al. 3D-Lab: a collaborative web-based platform for molecular modeling. Future Med Chem. 2016;8(14):1739–52. 10.4155/fmc-2016-0081 PubMed DOI
Goddard TD, Brilliant AA, Skillman TL, Vergenz S, Tyrwhitt-Drake J, Meng EC, et al. Molecular Visualization on the Holodeck. J Mol Biol. 2018;430(21):3982–3996. 10.1016/j.jmb.2018.06.040 PubMed DOI PMC
O’Connor M, Deeks HM, Dawn E, Metatla O, Roudaut A, Sutton M, et al. Sampling molecular conformations and dynamics in a multiuser virtual reality framework. Sci Adv. 2018;4(6):eaat2731 10.1126/sciadv.aat2731 PubMed DOI PMC
Tan S, Waugh R. In: Use of virtual-reality in teaching and learning molecular biology. Springer; 2013. p. 17–43.
Al-Balushi SM, Al-Hajri SH. Associating animations with concrete models to enhance students’ comprehension of different visual representations in organic chemistry. Chemistry Education Research and Practice. 2014;15(1):47–58. 10.1039/C3RP00074E DOI
Cruz-Neira C, Sandin DJ, DeFanti TA. Surround-screen projection-based virtual reality: the design and implementation of the CAVE. Citeseer;. p. 135–142.
Cruz-Neira C, Sandin DJ, DeFanti TA, Kenyon RV, Hart JC. The CAVE: audio visual experience automatic virtual environment. Communications of the ACM. 1992;35(6):64–73. 10.1145/129888.129892 DOI
Oigara JN. In: Keengwe J, editor. Integrating Virtual Reality Tools Into Classroom Instruction. Hershey, PA, USA: IGI Global; 2018. p. 147–159.
Taubin G, Horn WP, Lazarus F, Rossignac J. Geometry coding and VRML. Proceedings of the IEEE. 1998;86(6):1228–1243. 10.1109/5.687837 DOI
Daly L, Brutzman D. X3D: Extensible 3D graphics standard [standards in a nutshell]. IEEE Signal Processing Magazine. 2007;24(6):130–135. 10.1109/MSP.2007.4317479 DOI
Hoffman MA, Provance JB. Visualization of molecular structures using HoloLens-based augmented reality. AMIA Jt Summits Transl Sci Proc. 2017;2017:68–74. PubMed PMC
Li H, Leung KS, Nakane T, Wong MH. iview: an interactive WebGL visualizer for protein-ligand complex. BMC Bioinformatics. 2014;15:56 10.1186/1471-2105-15-56 PubMed DOI PMC
Muller C, Krone M, Huber M, Biener V, Herr D, Koch S, et al. Interactive Molecular Graphics for Augmented Reality Using HoloLens. J Integr Bioinform. 2018;15(2). 10.1515/jib-2018-0005 PubMed DOI PMC
Zheng M, Waller MP. ChemPreview: an augmented reality-based molecular interface. J Mol Graph Model. 2017;73:18–23. 10.1016/j.jmgm.2017.01.019 PubMed DOI
Chanteau SH, Tour JM. Synthesis of anthropomorphic molecules: the NanoPutians. J Org Chem. 2003;68(23):8750–66. 10.1021/jo0349227 PubMed DOI
Cobb SVG, Nichols S, Ramsey A, Wilson JR. Virtual Reality-Induced Symptoms and Effects (VRISE). Presence: Teleoperators and Virtual Environments. 1999;8(2):169–186. 10.1162/105474699566152 DOI
Durrant JD, Hall L, Swift RV, Landon M, Schnaufer A, Amaro RE. Novel Naphthalene-Based Inhibitors of Trypanosoma brucei RNA Editing Ligase 1. PLOS Neglected Tropical Diseases. 2010;4(8):e803 10.1371/journal.pntd.0000803 PubMed DOI PMC
Schnaufer A, Panigrahi AK, Panicucci B, Igo J Robert P, Salavati R, Stuart K. An RNA Ligase Essential for RNA Editing and Survival of the Bloodstream Form of Trypanosoma brucei. Science. 2001;291(5511):2159–2162. PubMed
Lukes J, Hashimi H, Zikova A. Unexplained complexity of the mitochondrial genome and transcriptome in kinetoplastid flagellates. Curr Genet. 2005;48(5):277–99. 10.1007/s00294-005-0027-0 PubMed DOI
Stuart KD, Schnaufer A, Ernst NL, Panigrahi AK. Complex management: RNA editing in trypanosomes. Trends in biochemical sciences. 2005;30(2):97–105. 10.1016/j.tibs.2004.12.006 PubMed DOI
Simpson L, Sbicego S, Aphasizhev R. Uridine insertion/deletion RNA editing in trypanosome mitochondria: a complex business. RNA (New York, NY). 2003;9(3):265–276. 10.1261/rna.2178403 PubMed DOI PMC
McManus MT, Shimamura M, Grams J, Hajduk SL. Identification of candidate mitochondrial RNA editing ligases from Trypanosoma brucei. RNA. 2001;7(2):167–75. 10.1017/s1355838201002072 PubMed DOI PMC
Swift RV, Durrant J, Amaro RE, McCammon JA. Toward understanding the conformational dynamics of RNA ligation. Biochemistry. 2009;48(4):709–19. 10.1021/bi8018114 PubMed DOI PMC
Ropp PJ, Spiegel JO, Walker JL, Green H, Morales GA, Milliken KA, et al. Gypsum-DL: an open-source program for preparing small-molecule libraries for structure-based virtual screening. J Cheminform. 2019;11(1):34 10.1186/s13321-019-0358-3 PubMed DOI PMC
Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry. 2009;31(2):455–461. PubMed PMC
Cassidy KC, Lahr R, Kaminsky JC, Mack S, Fonseca BD, Das SR, et al. Capturing the Mechanism Underlying TOP mRNA Binding to LARP1. Structure. 2019. 10.1016/j.str.2019.10.006 PubMed DOI PMC
Durrant JD, de Oliveira CA, McCammon JA. POVME: An algorithm for measuring binding-pocket volumes. Journal of Molecular Graphics and Modelling. 2011;29(5):773–6. 10.1016/j.jmgm.2010.10.007 PubMed DOI PMC
Durrant JD, Votapka L, Sorensen J, Amaro RE. POVME 2.0: An Enhanced Tool for Determining Pocket Shape and Volume Characteristics. Journal of Chemical Theory and Computation. 2014;10(11):5047–5056. 10.1021/ct500381c PubMed DOI PMC
Durrant JD. BlendMol: Advanced Macromolecular Visualization in Blender. Bioinformatics. 2018;35(13):2323–2325. 10.1093/bioinformatics/bty968 PubMed DOI PMC
Kent BR. 3D scientific visualization with blender. Morgan & Claypool Publishers; 2014.
Borrel A, Fourches D. RealityConvert: a tool for preparing 3D models of biochemical structures for augmented and virtual reality. Bioinformatics. 2017;33(23):3816–3818. 10.1093/bioinformatics/btx485 PubMed DOI
O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. J Cheminf. 2011;3:33 10.1186/1758-2946-3-33 PubMed DOI PMC
Zhang JF, Paciorkowski AR, Craig PA, Cui F. BioVR: a platform for virtual reality assisted biological data integration and visualization. BMC Bioinformatics. 2019;20(1):78 10.1186/s12859-019-2666-z PubMed DOI PMC
Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH, et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Science. 2018;27(1):14–25. 10.1002/pro.3235 PubMed DOI PMC
Balo AR, Wang M, Ernst OP. Accessible virtual reality of biomolecular structural models using the Autodesk Molecule Viewer. Nature methods. 2017;14(12):1122 10.1038/nmeth.4506 PubMed DOI
Lv Z, Tek A, Da Silva F, Empereur-Mot C, Chavent M, Baaden M. Game on, science-how video game technology may help biologists tackle visualization challenges. PloS one. 2013;8(3). 10.1371/journal.pone.0057990 PubMed DOI PMC
Vovk A, Wild F, Guest W, Kuula T. Simulator Sickness in Augmented Reality Training Using the Microsoft HoloLens. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. CHI’18. New York, NY, USA: ACM; 2018. p. 209:1–209:9. Available from: http://doi.acm.org/10.1145/3173574.3173783. DOI
Steptoe W, Julier S, Steed A. Presence and discernability in conventional and non-photorealistic immersive augmented reality. In: 2014 IEEE International Symposium on Mixed and Augmented Reality (ISMAR); 2014. p. 213–218.
Bennie SJ, Ranaghan KE, Deeks H, Goldsmith HE, O’Connor MB, Mulholland AJ, et al. Teaching enzyme catalysis using interactive molecular dynamics in virtual reality. Journal of Chemical Education. 2019;96(11):2488–2496. 10.1021/acs.jchemed.9b00181 DOI
Ferrell JB, Campbell JP, McCarthy DR, McKay KT, Hensinger M, Srinivasan R, et al. Chemical Exploration with Virtual Reality in Organic Teaching Laboratories. Journal of Chemical Education. 2019;96(9):1961–1966. 10.1021/acs.jchemed.9b00036 DOI
O’Connor MB, Bennie SJ, Deeks HM, Jamieson-Binnie A, Jones AJ, Shannon RJ, et al. Interactive molecular dynamics in virtual reality from quantum chemistry to drug binding: An open-source multi-person framework. The Journal of chemical physics. 2019;150(22):220901 10.1063/1.5092590 PubMed DOI
Rajendiran N, Durrant JD. Pyrite: A blender plugin for visualizing molecular dynamics simulations using industry-standard rendering techniques. Journal of Computational Chemistry. 2018;39(12):748–755. 10.1002/jcc.25155 PubMed DOI
Pacheco S, Kaminsky JC, Kochnev IK, Durrant JD. PCAViz: An Open-Source Python/JavaScript Toolkit for Visualizing Molecular Dynamics Simulations in the Web Browser. Journal of Chemical Information and Modeling. 2019;59(10):4087–4092. 10.1021/acs.jcim.9b00703 PubMed DOI PMC
Durrant JD, McCammon JA. BINANA: A novel algorithm for ligand-binding characterization. Journal of Molecular Graphics and Modelling. 2011;29(6):888–893. 10.1016/j.jmgm.2011.01.004 PubMed DOI PMC
Mikropoulos TA, Natsis A. Educational virtual environments: A ten-year review of empirical research (1999–2009). Computers & Education. 2011;56(3):769–780. 10.1016/j.compedu.2010.10.020 DOI
Trindade J, Fiolhais C, Almeida L. Science learning in virtual environments: a descriptive study. British Journal of Educational Technology. 2002;33(4):471–488. 10.1111/1467-8535.00283 DOI