Composite Properties of Non-Cement Blended Fiber Composites without Alkali Activator
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MOST 108-2221-E-197-006
Ministry of Science and Technology (MOST) in Taiwan
PubMed
32235687
PubMed Central
PMC7143280
DOI
10.3390/ma13061443
PII: ma13061443
Knihovny.cz E-zdroje
- Klíčová slova
- cementless composites, co-fired fly ash, fiber reinforced, green materials, microscopic property,
- Publikační typ
- časopisecké články MeSH
The vigorous promotion of reuse and recycling activities in Taiwan has solved a number of problems associated with the treatment of industrial waste. Considerable advances have been made in the conversion of waste materials into usable resources, thereby reducing the space required for waste storage and helping to conserve natural resources. This study examined the use of non-alkali activators to create bonded materials. Our aims were to evaluate the feasibility of using ground-granulated blast-furnace slag (S) and circulating fluidized bed co-fired fly ash (F) as non-cement binding materials and determine the optimal mix proportions (including embedded fibers) with the aim of achieving high dimensional stability and good mechanical properties. Under a fixed water/binder ratio of 0.55, we combined S and F to replace 100% of the cement at S:F ratios of 4:6, 5:5, 6:4. Polypropylene fibers (L/d = 375) were also included in the mix at 0.1%, 0.2% and 0.5% of the volume of all bonded materials. Samples were characterized in terms of flowability, compressive strength, tensile strength, water absorption, shrinkage, x-ray diffraction (XRD) and scanning electron microscope (SEM) analysis. Specimens made with an S:F ratio of 6:4 achieved compressive strength of roughly 30 MPa (at 28 days), which is the 80% the strength of conventional cement-based materials (control specimens). The inclusion of 0.2% fibers in the mix further increased compressive strength to 35 MPa and enhanced composite properties.
Zobrazit více v PubMed
Wang J., Wu H., Duan H., Zillante G., Zuo J., Yuan H. Combining life cycle assessment and Building Information Modelling to account for carbon emission of building demolition waste: A case study. J. Clean. Prod. 2018;172:3154–3166. doi: 10.1016/j.jclepro.2017.11.087. DOI
Koytsoumpa E.I., Bergins C., Kakaras E. The CO2 economy: Review of CO2 capture and reuse technologies. J. Supercrit. Fluids. 2018;132:3–16. doi: 10.1016/j.supflu.2017.07.029. DOI
Liguori B., Iucolano F., De Gennaro B., Marroccoli M., Caputo D. Zeolitized tuff in environmental friendly production of cementitious material: Chemical and mechanical characterization. Constr. Build. Mater. 2015;99:272–278. doi: 10.1016/j.conbuildmat.2015.09.035. DOI
Lu W., Webster C., Chen K., Zhang X., Chen X. Computational Building Information Modelling for construction waste management: Moving from rhetoric to reality. Renew. Sustain. Energy Rev. 2017;68:587–595. doi: 10.1016/j.rser.2016.10.029. DOI
Sapuay S. Construction Waste—Potentials and Constraints. Procedia Environ. Sci. 2016;35:714–722. doi: 10.1016/j.proenv.2016.07.074. DOI
Ferone C., Capasso I., Bonati A., Roviello G., Montagnaro F., Santoro L., Turco R., Cioffi R. Sustainable management of water potabilization sludge by means of geopolymers production. J. Clean. Prod. 2019;229:1–9. doi: 10.1016/j.jclepro.2019.04.299. DOI
Capasso I., Lirer S., Flora A., Ferone C., Cioffi R., Caputo D., Liguori B. Reuse of mining waste as aggregates in fly ash-based geopolymers. J. Clean. Prod. 2019;220:65–73. doi: 10.1016/j.jclepro.2019.02.164. DOI
Karim M., Hossain M., Zain M., Jamil M., Lai F. Durability properties of a non-cement binder made up of pozzolans with sodium hydroxide. Constr. Build. Mater. 2017;138:174–184. doi: 10.1016/j.conbuildmat.2017.01.130. DOI
Hemalatha M., Santhanam M. Characterizing supplementary cementing materials in blended mortars. Constr. Build. Mater. 2018;191:440–459. doi: 10.1016/j.conbuildmat.2018.09.208. DOI
Divsholi B.S., Lim T.Y.D., Teng S. Durability Properties and Microstructure of Ground Granulated Blast Furnace Slag Cement Concrete. Int. J. Concr. Struct. Mater. 2014;8:157–164. doi: 10.1007/s40069-013-0063-y. DOI
Yahaya F.M., Muthusamy K., Sulaiman N. Corrosion Resistance of High Strength Concrete Containing Palm Oil Fuel Ash as Partial Cement Replacement. Res. J. Appl. Sci. Eng. Technol. 2014;7:4720–4722. doi: 10.19026/rjaset.7.857. DOI
Özen S., Goncuoglu M., Liguori B., De Gennaro B., Cappelletti P., Gatta G.D., Iucolano F., Colella C. A comprehensive evaluation of sedimentary zeolites from Turkey as pozzolanic addition of cement- and lime-based binders. Constr. Build. Mater. 2016;105:46–61. doi: 10.1016/j.conbuildmat.2015.12.055. DOI
Hardjito D., Wallah S.E., Sumajouw D.M.J., Rangan B.V. On the development of fly ash-based geopolymer concrete. ACI Mater. J. 2004;101:467–472.
Chi M., Huang R. Binding mechanism and properties of alkali-activated fly ash/slag mortars. Constr. Build. Mater. 2013;40:291–298. doi: 10.1016/j.conbuildmat.2012.11.003. DOI
Zhang W., Choi H., Sagawa T., Hama Y. Compressive strength development and durability of an environmental load-reduction material manufactured using circulating fluidized bed ash and blast-furnace slag. Constr. Build. Mater. 2017;146:102–113. doi: 10.1016/j.conbuildmat.2017.04.042. DOI
Nguyen H.-A., Chang T.-P., Shih J.-Y., Chen C.-T., Nguyen T.-D. Influence of circulating fluidized bed combustion (CFBC) fly ash on properties of modified high volume low calcium fly ash (HVFA) cement paste. Constr. Build. Mater. 2015;91:208–215. doi: 10.1016/j.conbuildmat.2015.05.075. DOI
Chi M. Synthesis and characterization of mortars with circulating fluidized bed combustion fly ash and ground granulated blast-furnace slag. Constr. Build. Mater. 2016;123:565–573. doi: 10.1016/j.conbuildmat.2016.07.071. DOI
Wu Y.-H., Huang R., Tsai C.-J., Lin W.-T. Utilizing residues of CFB co-combustion of coal, sludge and TDF as an alkali activator in eco-binder. Constr. Build. Mater. 2015;80:69–75. doi: 10.1016/j.conbuildmat.2015.01.062. DOI
Guo H., Tao J., Chen Y., Li D., Jia B., Zhai Y. Effect of steel and polypropylene fibers on the quasi-static and dynamic splitting tensile properties of high-strength concrete. Constr. Build. Mater. 2019;224:504–514. doi: 10.1016/j.conbuildmat.2019.07.096. DOI
Shen D., Liu X., Zeng X., Zhao X., Jiang G. Effect of polypropylene plastic fibers length on cracking resistance of high performance concrete at early age. Constr. Build. Mater. 2020;244:117874. doi: 10.1016/j.conbuildmat.2019.117874. DOI
Szeląg M., Szeląg M. Evaluation of cracking patterns of cement paste containing polypropylene fibers. Compos. Struct. 2019;220:402–411. doi: 10.1016/j.compstruct.2019.04.038. DOI
Lin W.-T., Weng T.-L., Cheng A., Chao S.-J., Hsu H.-M. Properties of Controlled Low Strength Material with Circulating Fluidized Bed Combustion Ash and Recycled Aggregates. Materials. 2018;11:715. doi: 10.3390/ma11050715. PubMed DOI PMC
Ho H.-L., Huang R., Hwang L.-C., Lin W.-T., Hsu H.-M. Waste-Based Pervious Concrete for Climate-Resilient Pavements. Materials. 2018;11:900. doi: 10.3390/ma11060900. PubMed DOI PMC
Lin W.-T., Lin K., Chen K., Korniejenko K., Hebda M., Łach M. Circulation Fluidized Bed Combustion Fly Ash as Partial Replacement of Fine Aggregates in Roller Compacted Concrete. Materials. 2019;12:4204. doi: 10.3390/ma12244204. PubMed DOI PMC
Kuder K.G., Ozyurt N., Mu E.B., Shah S., Özyurt N. Rheology of fiber-reinforced cementitious materials. Cem. Concr. Res. 2007;37:191–199. doi: 10.1016/j.cemconres.2006.10.015. DOI
Verdolotti L., Iucolano F., Capasso I., Lavorgna M., Iannace S., Liguori B. Recycling and recovery of PE-PP-PET-based fiber polymeric wastes as aggregate replacement in lightweight mortar: Evaluation of environmental friendly application. Environ. Prog. Sustain. Energy. 2014;33:1445–1451. doi: 10.1002/ep.11921. DOI
Han T.-Y., Lin W.-T., Cheng A., Huang R., Huang C.-C. Influence of polyolefin fibers on the engineering properties of cement-based composites containing silica fume. Mater. Des. 2012;37:569–576. doi: 10.1016/j.matdes.2011.10.038. DOI
Mashrei M.A., Sultan A., Mahdi A.M. Effects of polypropylene fibers on compressive and flexural strength of concrete material. Int. J. Civ. Eng. Technol. 2018;9:2208–2217.
Wu Y.-H., Huang R., Tsai C.-J., Lin W.-T. Recycling of Sustainable Co-Firing Fly Ashes as an Alkali Activator for GGBS in Blended Cements. Materials. 2015;8:784–798. doi: 10.3390/ma8020784. PubMed DOI PMC
Sheng G., Zhai J., Li Q., Li F. Utilization of fly ash coming from a CFBC boiler co-firing coal and petroleum coke in Portland cement. Fuel. 2007;86:2625–2631. doi: 10.1016/j.fuel.2007.02.018. DOI
Guo B., Xiong Y., Chen W., Saslow S.A., Kozai N., Ohnuki T., Dabo I., Sasaki K. Spectroscopic and first-principles investigations of iodine species incorporation into ettringite: Implications for iodine migration in cement waste forms. J. Hazard. Mater. 2020;389:121880. doi: 10.1016/j.jhazmat.2019.121880. PubMed DOI
Anthony E.J., Jia L., Wu Y. CFBC ash hydration studies. Fuel. 2005;84:1393–1397. doi: 10.1016/j.fuel.2004.10.017. DOI
Lin K., Cheng T.-W., Ho C.-H., Chang Y.-M., Lo K.-W. Utilization of Circulating Fluidized Bed Fly Ash as Pozzolanic Material. Open Civ. Eng. J. 2017;11:176–186. doi: 10.2174/1874149501711010176. DOI
Poon C., Kou S., Lam L., Lin Z. Activation of fly ash/cement systems using calcium sulfate anhydrite (CaSO4) Cem. Concr. Res. 2001;31:873–881. doi: 10.1016/S0008-8846(01)00478-1. DOI
Baek C., Seo J., Choi M., Cho J., Ahn J., Cho K. Utilization of CFBC Fly Ash as a Binder to Produce In-Furnace Desulfurization Sorbent. Sustainability. 2018;10:4854. doi: 10.3390/su10124854. DOI