Sublimation Properties of α,ω-Diamines Revisited from First-Principles Calculations
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
LTAUSA18011
The Ministry of Education, Youth and Sports of the Czech Republic - International
- Keywords
- ab initio calculations, diamines, molecular crystals, sublimation, thermodynamics,
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Sublimation enthalpies of alkane-α,ω-diamines exhibit an odd-even pattern within their homologous series. First-principles calculations coupled with the quasi-harmonic approximation for crystals and with the conformation mixing model for the ideal gas are used to explain this phenomenon from the theoretical point of view. Crystals of the odd and even alkane-α,ω-diamines distinctly differ in their packing motifs. However, first-principles calculations indicate that it is a delicate interplay of the cohesive forces, phonons, molecular vibrations and conformational equilibrium which governs the odd-even pattern of the sublimation enthalpies within the homologous series. High molecular flexibility of the alkane-α,ω-diamines predetermines higher sensitivity of the computational model to the quality of the optimized geometries and relative conformational energies. Performance of high-throughput computational methods, such as the density functional tight binding (DFTB, GFN2-xTB) and the explicitly correlated dispersion-corrected Møller-Plesset perturbative method (MP2C-F12), are benchmarked against the consistent state-of-the-art calculations of conformational energies and interaction energies, respectively.
See more in PubMed
E. Agostinelli, M. P. M. Marques, R. Calheiros, F. P. S. C. Gil, G. Tempera, N. Viceconte, V. Battaglia, S. Grancara, A. Toninello, Amino Acids. 2010, 38, 393-403.
M. Pervaiz, M. Faruq, M. Jawaid, M. Sain, Curr. Org. Synth. 2017, 14, 146-155.
D. J. Liaw, K. L. Wang, Y. C. Huang, K. R. Lee, J. Y. Lai, C. S. Ha, Prog. Polym. Sci. 2012, 37, 907-974.
K. Eller, E. Henkes, R. Rossbacher, H. Höke, in Amines, Aliphatic, Vol., Wiley-VCH Verlag GmbH & Co. KGaA, 2000, pp.647-698.
M. Fulem, K. Růžička, C. Červinka, A. Bazyleva, G. Della Gatta, Fluid Phase Equilib. 2014, 371, 93-105.
J. C. S. Costa, A. Mendes, L. M. N. B. F. Santos, J. Chem. Eng. Data. 2018, 63, 1-20.
J. C. S. Costa, L. M. N. B. F. Santos, J. Chem. Eng. Data. 2019, 64, 2229-2246.
V. R. Thalladi, R. Boese, H. C. Weiss, Angew. Chem. Int. Ed. 2000, 39, 918-922;
Angew. Chem. 2000, 112, 942-946.
J. D. Dunitz, A. Gavezzotti, Chem. Soc. Rev. 2009, 38, 2622-2633.
A. L. Ringer, C. D. Sherrill, Chem. Eur. J. 2008, 14, 2542-2547.
J. Hermann, R. A. DiStasio, A. Tkatchenko, Chem. Rev. 2017, 117, 4714-4758.
G. J. O. Beran, Chem. Rev. 2016, 116, 5567-5613.
J. Hoja, A. M. Reilly, A. Tkatchenko, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2017, 7, e1294.
S. L. Price, D. E. Braun, S. M. Reutzel-Edens, Chem. Commun. 2016, 52, 7065-7077.
L. A. Burns, M. S. Marshall, C. D. Sherrill, J. Chem. Phys. 2014, 141, 234111.
J. Řezáč, K. E. Riley, P. Hobza, J. Chem. Theory Comput. 2011, 7, 2427-2438.
M. Dubecký, P. Jurečka, R. Derian, P. Hobza, M. Otyepka, L. Mitas, J. Chem. Theory Comput. 2013, 9, 4287-4292.
C. Müller, D. Usvyat, J. Chem. Theory Comput. 2013, 9, 5590-5598.
L. Maschio, D. Usvyat, B. Civalleri, CrystEngComm 2010, 12, 2429-2435.
J. Klimeš, J. Chem. Phys. 2016, 145, 094506.
D. J. Carter, A. L. Rohl, J. Chem. Theory Comput. 2014, 10, 3423-3437.
A. Otero-de-la-Roza, E. R. Johnson, J. Chem. Phys. 2012, 137, 054103.
G. Sansone, B. Civalleri, D. Usvyat, J. Toulouse, K. Sharkas, L. Maschio, J. Chem. Phys. 2015, 143, 102811.
A. D. Boese, J. Sauer, Cryst. Growth Des. 2017, 17, 1636-1646.
J. G. Brandenburg, S. Grimme, Acta Crystallogr. Sect. B 2016, 72, 502-513.
J. Moellmann, S. Grimme, J. Phys. Chem. C. 2014, 118, 7615-7621.
J. Yang, W. F. Hu, D. Usvyat, D. Matthews, M. Schutz, G. K. L. Chan, Science 2014, 345, 640-643.
G. J. O. Beran, S. Wen, K. Nanda, Y. Huang, Y. Heit, Top. Curr. Chem. 2014, 345, 59-93.
S. Hirata, K. Gilliard, X. He, J. Li, O. Sode, Acc. Chem. Res. 2014, 47, 2721-2730.
K. Rosciszewski, B. Paulus, P. Fulde, H. Stoll, Phys. Rev. B. 2000, 62, 5482-5488.
P. J. Bygrave, N. L. Allan, F. R. Manby, J. Chem. Phys. 2012, 137, 164102.
C. Červinka, M. Fulem, J. Chem. Theory Comput. 2017, 13, 2840-2850.
C. Červinka, G. J. O. Beran, Chem. Sci. 2018, 9, 4622-4629.
Y. N. Heit, K. D. Nanda, G. J. O. Beran, Chem. Sci. 2016, 7, 246-255.
J. L. McKinley, G. J. O. Beran, Faraday Discuss. 2018, 211, 181-207.
Y. N. Heit, G. J. O. Beran, Acta Crystallogr. Sect. B 2016, 72, 514-529.
J. L. McDonagh, D. S. Palmer, T. van Mourik, J. B. O. Mitchell, J. Chem. Inf. Model. 2016, 56, 2162-2179.
R. P. Stoffel, C. Wessel, M.-W. Lumey, R. Dronskowski, Angew. Chem. Int. Ed. 2010, 49, 5242-5266;
Angew. Chem. 2010, 122, 5370-5395.
J. George, V. L. Deringer, A. Wang, P. Muller, U. Englert, R. Dronskowski, J. Chem. Phys. 2016, 145, 234512.
J. George, R. M. Wang, U. Englert, R. Dronskowski, J. Chem. Phys. 2017, 147, 074112.
J. Nyman, G. M. Day, Phys. Chem. Chem. Phys. 2016, 18, 31132-31143.
J. Hoja, H. Y. Ko, M. A. Neumann, R. Car, R. A. DiStasio, A. Tkatchenko, Sci. Adv. 2019, 5, eaau3338.
J. G. Brandenburg, J. Potticary, H. A. Sparkes, S. L. Price, S. R. Hall, J. Phys. Chem. Lett. 2017, 8, 4319-4324.
V. Štejfa, M. Fulem, K. Růžička, J. Chem. Phys. 2019, 150, 224101.
V. Štejfa, M. Fulem, K. Růžička, J. Chem. Phys. 2019, 151, 144504.
J. Pfaendtner, X. Yu, L. J. Broadbelt, Theor. Chem. Acc. 2007, 118, 881-898.
A. L. L. East, L. Radom, J. Chem. Phys. 1997, 106, 6655-6674.
C. Červinka, M. Fulem, K. Růžička, J. Chem. Eng. Data. 2012, 57, 227-232.
K. Růžička, V. Majer, AIChE J. 1996, 42, 1723-1740.
W. Acree, J. S. Chickos, J. Phys. Chem. Ref. Data. 2016, 45, 033101.
W. Acree, J. S. Chickos, J. Phys. Chem. Ref. Data. 2017, 46, 013104.
C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, Acta Crystallogr. Sect. B 2016, 72, 171-179.
J. Hafner, G. Kresse, D. Vogtenhuber, M. Marsman, Vienna Ab-initio Simulation Package 5.4.1, 2014.
P. E. Blöchl, Phys. Rev. B. 1994, 50, 17953-17979.
G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758-1775.
H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188-5192.
K. Lee, É. D. Murray, L. Kong, B. I. Lundqvist, D. C. Langreth, Phys. Rev. B 2010, 82, 081101.
R. Dovesi, A. Erba, R. Orlando, C. M. Zicovich-Wilson, B. Civalleri, L. Maschio, M. Rérat, S. Casassa, J. Baima, S. Salustro, B. Kirtman, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018, 8, e1360.
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465.
M. F. Peintinger, D. V. Oliveira, T. Bredow, J. Comput. Chem. 2013, 34, 451-459.
D. Vilela Oliveira, J. Laun, M. F. Peintinger, T. Bredow, J. Comput. Chem. 2019, 40, 2364-2376.
K. Parlinski, Z. Q. Li, Y. Kawazoe, Phys. Rev. Lett. 1997, 78, 4063-4066.
A. Togo, I. Tanaka, Scr. Mater. 2015, 108, 1-5.
C. Červinka, M. Klajmon, V. Štejfa, J. Chem. Theory Comput. 2019, 15, 5563-5578.
Y. H. Huang, Y. H. Shao, G. J. O. Beran, J. Chem. Phys. 2013, 138, 224112.
M. Pitoňák, A. Heßelmann, J. Chem. Theory Comput. 2010, 6, 168-178.
G. Knizia, T. B. Adler, H.-J. Werner, J. Chem. Phys. 2009, 130, 054104.
H.-J. Werner, T. B. Adler, F. R. Manby, J. Chem. Phys. 2007, 126, 164102.
H.-J. Werner, J. Chem. Phys. 2008, 129, 101103.
T. B. Adler, H.-J. Werner, J. Chem. Phys. 2011, 135, 144117.
S. F. Boys, F. Bernardi, Mol. Phys. 1970, 19, 553-566.
A. Halkier, T. Helgaker, P. Jorgensen, W. Klopper, H. Koch, J. Olsen, A. K. Wilson, Chem. Phys. Lett. 1998, 286, 243-252.
J. Řezáč, P. Hobza, J. Chem. Theory Comput. 2013, 9, 2151-2155.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 09 Revision D.01, Wallingford, CT, 2013.
H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 242-253.
J. W. Ponder, C. Wu, P. Ren, V. S. Pande, J. D. Chodera, M. J. Schnieders, I. Haque, D. L. Mobley, D. S. Lambrecht, R. A. DiStasio, M. Head-Gordon, G. N. I. Clark, M. E. Johnson, T. Head-Gordon, J. Phys. Chem. B. 2010, 114, 2549-2564.
G. J. O. Beran, K. Nanda, J. Phys. Chem. Lett. 2010, 1, 3480-3487.
K. D. Nanda, G. J. O. Beran, J. Chem. Phys. 2012, 137, 174106.
P. Pracht, F. Bohle, S. Grimme, Phys. Chem. Chem. Phys. 2020, 22, 7169-7192.
G. Tasi, F. Mizukami, J. Csontos, W. Gyorffy, I. Palinko, J. Math. Chem. 2000, 27, 191-199.
G. Tasi, F. Mizukami, I. Palinko, J. Csontos, W. Gyorffy, P. Nair, K. Maeda, M. Toba, S. Niwa, Y. Kiyozumi, I. Kiricsi, J. Phys. Chem. A. 1998, 102, 7698-7703.
A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.
C. T. Lee, W. T. Yang, R. G. Parr, Phys. Rev. B. 1988, 37, 785-789.
G. Zheng, H. A. Witek, P. Bobadova-Parvanova, S. Irle, D. G. Musaev, R. Prabhakar, K. Morokuma, M. Lundberg, M. Elstner, C. Köhler, T. Frauenheim, J. Chem. Theory Comput. 2007, 3, 1349-1367.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16 Revision B.01, Wallingford, CT, 2016.
C. Bannwarth, S. Ehlert, S. Grimme, J. Chem. Theory Comput. 2019, 15, 1652-1671.
S. Grimme, C. Bannwarth, P. Shushkov, J. Chem. Theory Comput. 2017, 13, 1989-2009.
A. J. Stone, J. Chem. Theory Comput. 2005, 1, 1128-1132.
A. Budzianowski, A. Olejniczak, A. Katrusiak, Acta Crystallogr. Sect. B 2006, 62, 1078-1089.
S. Jamet-Delcroix, Acta Crystallogr. Sect. B 1973, 29, 977-980.
W. P. Binnie, J. M. Robertson, Acta Crystallogr. 1950, 3, 424-429.
R. Gotthardt, J.-H. Fuhrhop, J. Buschmann, P. Luger, Acta Crystallogr. Sect. C 1997, 53, 1715-1717.
L. M. LeBlanc, S. G. Dale, C. R. Taylor, A. D. Becke, G. M. Day, E. R. Johnson, Angew. Chem. Int. Ed. 2018, 57, 14906-14910.
J. F. Messerly, H. L. Finke, A. G. Osborn, D. R. Douslin, J. Chem. Thermodyn. 1975, 7, 1029-1046.
C. Červinka, G. J. O. Beran, Phys. Chem. Chem. Phys. 2019, 21, 14799-14810.
First-Principles Models of Polymorphism of Pharmaceuticals: Maximizing the Accuracy-to-Cost Ratio