First-Principles Models of Polymorphism of Pharmaceuticals: Maximizing the Accuracy-to-Cost Ratio

. 2024 Apr 09 ; 20 (7) : 2858-2870. [epub] 20240326

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38531828

Accuracy and sophistication of in silico models of structure, internal dynamics, and cohesion of molecular materials at finite temperatures increase over time. Applicability limits of ab initio polymorph ranking that would be feasible at reasonable costs currently represent crystals of moderately sized molecules (less than 20 nonhydrogen atoms) and simple unit cells (containing rather only one symmetry-irreducible molecule). Extending the applicability range of the underlying first-principles methods to larger systems with a real-life significance, and enabling to perform such computations in a high-throughput regime represent additional challenges to be tackled in computational chemistry. This work presents a novel composite method that combines the computational efficiency of density-functional tight-binding (DFTB) methods with the accuracy of density-functional theory (DFT). Being rooted in the quasi-harmonic approximation, it uses a cheap method to perform all of the costly scans of how static and dynamic characteristics of the crystal vary with respect to its volume. Such data are subsequently corrected to agree with a higher-level model, which must be evaluated only at a single volume of the crystal. It thus enables predictions of structural, cohesive, and thermodynamic properties of complex molecular materials, such as pharmaceuticals or organic semiconductors, at a fraction of the original computational cost. As the composite model retains the solid physical background, it suffers from a minimum accuracy deterioration compared to the full treatment with the costly approach. The novel methodology is demonstrated to provide consistent results for the structural and thermodynamic properties of real-life molecular crystals and their polymorph ranking.

Zobrazit více v PubMed

Heit Y. N.; Nanda K. D.; Beran G. J. O. Predicting Finite-Temperature Properties of Crystalline Carbon Dioxide from First Principles with Quantitative Accuracy. Chem. Sci. 2016, 7 (1), 246–255. 10.1039/C5SC03014E. PubMed DOI PMC

McKinley J. L.; Beran G. J. O. Identifying pragmatic quasi-harmonic electronic structure approaches for modeling molecular crystal thermal expansion. Faraday Discuss. 2018, 211 (0), 181–207. 10.1039/C8FD00048D. PubMed DOI

Červinka C.; Klajmon M.; Štejfa V. Cohesive Properties of Ionic Liquids Calculated from First Principles. J. Chem. Theory Comput. 2019, 15 (10), 5563–5578. 10.1021/acs.jctc.9b00625. PubMed DOI

Červinka C.; Štejfa V. Sublimation Properties of α,ω-Diamines Revisited from First-Principles Calculations. ChemPhysChem 2020, 21 (11), 1184–1194. 10.1002/cphc.202000108. PubMed DOI

George J.; Wang R. M.; Englert U.; Dronskowski R. Lattice thermal expansion and anisotropic displacements in urea, bromomalonic aldehyde, pentachloropyridine, and naphthalene. J. Chem. Phys. 2017, 147 (7), 07411210.1063/1.4985886. PubMed DOI

Pokorný V.; Touš P.; Štejfa V.; Růžička K.; Rohlíček J.; Czernek J.; Brus J.; Červinka C. Anisotropy, segmental dynamics and polymorphism of crystalline biogenic carboxylic acids. Phys. Chem. Chem. Phys. 2022, 24 (42), 25904–25917. 10.1039/D2CP03698C. PubMed DOI

Hirata S.; Gilliard K.; He X.; Li J.; Sode O. Ab Initio Molecular Crystal Structures, Spectra, and Phase Diagrams. Acc. Chem. Res. 2014, 47 (9), 2721–2730. 10.1021/ar500041m. PubMed DOI

Červinka C.; Fulem M.; Stoffel R. P.; Dronskowski R. Thermodynamic properties of molecular crystals calculated within the quasi-harmonic approximation. J. Phys. Chem. A 2016, 120, 2022–2034. 10.1021/acs.jpca.6b00401. PubMed DOI

Hong B. K.; Fang T.; Li W.; Li S. H. Predicting the structures and vibrational spectra of molecular crystals containing large molecules with the generalized energy-based fragmentation approach. J. Chem. Phys. 2023, 158 (4), 04411710.1063/5.0137072. PubMed DOI

Moellmann J.; Grimme S. DFT-D3 Study of Some Molecular Crystals. J. Phys. Chem. C 2014, 118 (14), 7615–7621. 10.1021/jp501237c. DOI

Klimeš J. Lattice energies of molecular solids from the random phase approximation with singles corrections. J. Chem. Phys. 2016, 145 (9), 09450610.1063/1.4962188. PubMed DOI

Brandenburg J. G.; Grimme S. Organic Crystal Polymorphism: A Benchmark for Dispersion-Corrected Mean-Field Electronic Structure Methods. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2016, 72, 502–513. 10.1107/S2052520616007885. PubMed DOI

Hoja J.; Reilly A. M.; Tkatchenko A. First-Principles Modeling of Molecular Crystals: Structures and Stabilities, Temperature and Pressure. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2017, 7 (1), e129410.1002/wcms.1294. DOI

Nyman J.; Day G. M. Modelling temperature-dependent properties of polymorphic organic molecular crystals. Phys. Chem. Chem. Phys. 2016, 18 (45), 31132–31143. 10.1039/C6CP05447A. PubMed DOI PMC

Dolgonos G. A.; Hoja J.; Boese A. D. Revised values for the X23 benchmark set of molecular crystals. Phys. Chem. Chem. Phys. 2019, 21 (44), 24333–24344. 10.1039/C9CP04488D. PubMed DOI

Červinka C.; Fulem M. State-of-the-Art Calculations of Sublimation Enthalpies for Selected Molecular Crystals and Their Computational Uncertainty. J. Chem. Theory Comput. 2017, 13, 2840–2850. 10.1021/acs.jctc.7b00164. PubMed DOI

Červinka C.; Fulem M. Probing the Accuracy of First-Principles Modeling of Molecular Crystals: Calculation of Sublimation Pressures. Cryst. Growth Des. 2019, 19 (2), 808–820. 10.1021/acs.cgd.8b01374. DOI

Xavier N. F.; Bauerfeldt G. F. Determination of the Cohesive Properties and Sublimation Temperatures of Glycine Polymorphs. Cryst. Growth Des. 2021, 21 (11), 6266–6275. 10.1021/acs.cgd.1c00724. DOI

Červinka C.; Beran G. J. O. Ab initio prediction of the polymorph phase diagram for crystalline methanol. Chem. Sci. 2018, 9 (20), 4622–4629. 10.1039/C8SC01237G. PubMed DOI PMC

Cook C.; McKinley J. L.; Beran G. J. O. Modeling the α- and β-resorcinol phase boundary via combination of density functional theory and density functional tight-binding. J. Chem. Phys. 2021, 154 (13), 13410910.1063/5.0044385. PubMed DOI PMC

Otero-de-la-Roza A.; Johnson E. R. A Benchmark for Non-Covalent Interactions in Solids. J. Chem. Phys. 2012, 137 (5), 05410310.1063/1.4738961. PubMed DOI

Reilly A. M.; Tkatchenko A. Understanding the Role of Vibrations, Exact Exchange, and Many-body van der Waals Interactions in the Cohesive Properties of Molecular Crystals. J. Chem. Phys. 2013, 139 (2), 02470510.1063/1.4812819. PubMed DOI

Cutini M.; Civalleri B.; Corno M.; Orlando R.; Brandenburg J. G.; Maschio L.; Ugliengo P. Assessment of Different Quantum Mechanical Methods for the Prediction of Structure and Cohesive Energy of Molecular Crystals. J. Chem. Theory Comput. 2016, 12 (7), 3340–3352. 10.1021/acs.jctc.6b00304. PubMed DOI

Weatherby J. A.; Rumson A. F.; Price A. J. A.; de la Roza A. O.; Johnson E. R. A density-functional benchmark of vibrational free-energy corrections for molecular crystal polymorphism. J. Chem. Phys. 2022, 156 (11), 11410810.1063/5.0083082. PubMed DOI

Thomas S. P.; Spackman P. R.; Jayatilaka D.; Spackman M. A. Accurate Lattice Energies for Molecular Crystals from Experimental Crystal Structures. J. Chem. Theory Comput. 2018, 14 (3), 1614–1623. 10.1021/acs.jctc.7b01200. PubMed DOI

Beran G. J. O. Modeling Polymorphic Molecular Crystals with Electronic Structure Theory. Chem. Rev. 2016, 116 (9), 5567–5613. 10.1021/acs.chemrev.5b00648. PubMed DOI

Beran G. J. O.; Sugden I. J.; Greenwell C.; Bowskill D. H.; Pantelides C. C.; Adjiman C. S. How many more polymorphs of ROY remain undiscovered. Chem. Sci. 2022, 13 (5), 1288–1297. 10.1039/D1SC06074K. PubMed DOI PMC

Price S. L.; Braun D. E.; Reutzel-Edens S. M. Can computed crystal energy landscapes help understand pharmaceutical solids?. Chem. Commun. 2016, 52 (44), 7065–7077. 10.1039/C6CC00721J. PubMed DOI PMC

Banks P. A.; Maul J.; Mancini M. T.; Whalley A. C.; Erba A.; Ruggiero M. T. Thermoelasticity in organic semiconductors determined with terahertz spectroscopy and quantum quasi-harmonic simulations. J. Mater. Chem. C 2020, 8 (31), 10917–10925. 10.1039/D0TC01676D. DOI

Talnack F.; Hutsch S.; Bretschneider M.; Krupskaya Y.; Büchner B.; Malfois M.; Hambsch M.; Ortmann F.; Mannsfeld S. C. B. Thermal behavior and polymorphism of 2,9-didecyldinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene thin films. Mol. Syst. Des. Eng. 2022, 7 (5), 507–519. 10.1039/D1ME00153A. DOI

Brandenburg J. G.; Potticary J.; Sparkes H. A.; Price S. L.; Hall S. R. Thermal Expansion of Carbamazepine: Systematic Crystallographic Measurements Challenge Quantum Chemical Calculations. J. Phys. Chem. Lett. 2017, 8 (17), 4319–4324. 10.1021/acs.jpclett.7b01944. PubMed DOI

Červinka C.; Štejfa V.; Pokorný V.; Touš P.; Růžička K. Orientational Disorder in Crystalline Disubstituted Benzenes and Its Implications for Sublimation and Polymorphism. Cryst. Growth Des. 2023, 23 (12), 9011–9024. 10.1021/acs.cgd.3c01057. DOI

Reilly A. M.; Cooper R. I.; Adjiman C. S.; Bhattacharya S.; Boese A. D.; Brandenburg J. G.; Bygrave P. J.; Bylsma R.; Campbell J. E.; Car R.; Case D. H.; Chadha R.; Cole J. C.; Cosburn K.; Cuppen H. M.; Curtis F.; Day G. M.; DiStasio Jr R. A.; Dzyabchenko A.; van Eijck B. P.; Elking D. M.; van den Ende J. A.; Facelli J. C.; Ferraro M. B.; Fusti-Molnar L.; Gatsiou C.-A.; Gee T. S.; de Gelder R.; Ghiringhelli L. M.; Goto H.; Grimme S.; Guo R.; Hofmann D. W. M.; Hoja J.; Hylton R. K.; Iuzzolino L.; Jankiewicz W.; de Jong D. T.; Kendrick J.; de Klerk N. J. J.; Ko H.-Y.; Kuleshova L. N.; Li X.; Lohani S.; Leusen F. J. J.; Lund A. M.; Lv J.; Ma Y.; Marom N.; Masunov A. E.; McCabe P.; McMahon D. P.; Meekes H.; Metz M. P.; Misquitta A. J.; Mohamed S.; Monserrat B.; Needs R. J.; Neumann M. A.; Nyman J.; Obata S.; Oberhofer H.; Oganov A. R.; Orendt A. M.; Pagola G. I.; Pantelides C. C.; Pickard C. J.; Podeszwa R.; Price L. S.; Price S. L.; Pulido A.; Read M. G.; Reuter K.; Schneider E.; Schober C.; Shields G. P.; Singh P.; Sugden I. J.; Szalewicz K.; Taylor C. R.; Tkatchenko A.; Tuckerman M. E.; Vacarro F.; Vasileiadis M.; Vazquez-Mayagoitia A.; Vogt L.; Wang Y.; Watson R. E.; de Wijs G. A.; Yang J.; Zhu Q.; Groom C. R. Report on the sixth blind test of organic crystal structure prediction methods. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2016, 72 (4), 439–459. 10.1107/S2052520616007447. PubMed DOI PMC

Kapil V.; Engel E. A. A complete description of thermodynamic stabilities of molecular crystals. Proc. Natl. Acad. Sci. U.S.A. 2022, 119 (6), e211176911910.1073/pnas.2111769119. PubMed DOI PMC

Cook C.; Beran G. J. O. Reduced-cost supercell approach for computing accurate phonon density of states in organic crystals. J. Chem. Phys. 2020, 153 (22), 22410510.1063/5.0032649. PubMed DOI

Stoffel R. P.; Wessel C.; Lumey M.-W.; Dronskowski R. Ab Initio Thermochemistry of Solid-State Materials. Angew. Chem., Int. Ed. 2010, 49 (31), 5242–5266. 10.1002/anie.200906780. PubMed DOI

Groom C. R.; Bruno I. J.; Lightfoot M. P.; Ward S. C. The Cambridge Structural Database. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2016, 72 (2), 171–179. 10.1107/S2052520616003954. PubMed DOI PMC

Ostrowska K.; Kropidłowska M.; Katrusiak A. High-Pressure Crystallization and Structural Transformations in Compressed R,S-Ibuprofen. Cryst. Growth Des. 2015, 15 (3), 1512–1517. 10.1021/cg5018888. DOI

Štejfa V.; Pokorný V.; Mathers A.; Růžička K.; Fulem M. Heat capacities of selected active pharmaceutical ingredients. J. Chem. Thermodyn. 2021, 163, 10658510.1016/j.jct.2021.106585. DOI

Derollez P.; Dudognon E.; Affouard F.; Danede F.; Correia N. T.; Descamps M. Ab initio structure determination of phase II of racemic ibuprofen by X-ray powder diffraction. Acta Crystallogr., Sect. B: Struct. Sci. 2010, 66 (1), 76–80. 10.1107/S0108768109047363. PubMed DOI

King M. D.; Buchanan W. D.; Korter T. M. Understanding the Terahertz Spectra of Crystalline Pharmaceuticals: Terahertz Spectroscopy and Solid-State Density Functional Theory Study of (S)-(+)-Ibuprofen and (RS)-Ibuprofen. J. Pharm. Sci. 2011, 100 (3), 1116–1129. 10.1002/jps.22339. PubMed DOI

López-Mejías V.; Kampf J. W.; Matzger A. J. Nonamorphism in Flufenamic Acid and a New Record for a Polymorphic Compound with Solved Structures. J. Am. Chem. Soc. 2012, 134 (24), 9872–9875. 10.1021/ja302601f. PubMed DOI PMC

Delaney S. P.; Smith T. M.; Korter T. M. Conformational origins of polymorphism in two forms of flufenamic acid. J. Mol. Struct. 2014, 1078, 83–89. 10.1016/j.molstruc.2014.02.001. DOI

Sovago I.; Gutmann M. J.; Hill J. G.; Senn H. M.; Thomas L. H.; Wilson C. C.; Farrugia L. J. Experimental Electron Density and Neutron Diffraction Studies on the Polymorphs of Sulfathiazole. Cryst. Growth Des. 2014, 14 (3), 1227–1239. 10.1021/cg401757z. PubMed DOI PMC

Abu Bakar M. R.; Nagy Z. K.; Rielly C. D.; Dann S. E. Investigation of the riddle of sulfathiazole polymorphism. Int. J. Pharm. 2011, 414 (1), 86–103. 10.1016/j.ijpharm.2011.05.004. PubMed DOI

Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865–3868. 10.1103/PhysRevLett.77.3865. PubMed DOI

Grimme S.; Ehrlich S.; Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32 (7), 1456–1465. 10.1002/jcc.21759. PubMed DOI

Kresse G.; Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54 (16), 11169–11186. 10.1103/PhysRevB.54.11169. PubMed DOI

Kresse G.; Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6 (1), 15–50. 10.1016/0927-0256(96)00008-0. DOI

Blöchl P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50 (24), 17953–17979. 10.1103/PhysRevB.50.17953. PubMed DOI

Kresse G.; Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59 (3), 1758–1775. 10.1103/PhysRevB.59.1758. DOI

Monkhorst H. J.; Pack J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13 (12), 5188–5192. 10.1103/PhysRevB.13.5188. DOI

Touš P.; Červinka C. Dynamic Disorder, Strain, and Sublimation of Crystalline Caged Hydrocarbons from First Principles. Cryst. Growth Des. 2023, 23 (6), 4082–4097. 10.1021/acs.cgd.2c01496. DOI

Gaus M.; Cui Q.; Elstner M. DFTB3: Extension of the Self-Consistent-Charge Density-Functional Tight-Binding Method (SCC-DFTB). J. Chem. Theory Comput. 2011, 7 (4), 931–948. 10.1021/ct100684s. PubMed DOI PMC

Hourahine B.; Aradi B.; Blum V.; Bonafé F.; Buccheri A.; Camacho C.; Cevallos C.; Deshaye M. Y.; Dumitrică T.; Dominguez A.; Ehlert S.; Elstner M.; van der Heide T.; Hermann J.; Irle S.; Kranz J. J.; Köhler C.; Kowalczyk T.; Kubař T.; Lee I. S.; Lutsker V.; Maurer R. J.; Min S. K.; Mitchell I.; Negre C.; Niehaus T. A.; Niklasson A. M. N.; Page A. J.; Pecchia A.; Penazzi G.; Persson M. P.; Řezáč J.; Sánchez C. G.; Sternberg M.; Stöhr M.; Stuckenberg F.; Tkatchenko A.; Yu V. W.-z.; Frauenheim T. DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. J. Chem. Phys. 2020, 152 (12), 12410110.1063/1.5143190. PubMed DOI

Gaus M.; Goez A.; Elstner M. Parametrization and Benchmark of DFTB3 for Organic Molecules. J. Chem. Theory Comput. 2013, 9 (1), 338–354. 10.1021/ct300849w. PubMed DOI

Kubillus M.; Kubař T.; Gaus M.; Řezáč J.; Elstner M. Parameterization of the DFTB3Method for Br, Ca, Cl, F, I, K, and Na in Organic and Biological Systems. J. Chem. Theory Comput. 2015, 11 (1), 332–342. 10.1021/ct5009137. PubMed DOI

Caldeweyher E.; Ehlert S.; Hansen A.; Neugebauer H.; Spicher S.; Bannwarth C.; Grimme S. A generally applicable atomic-charge dependent London dispersion correction. J. Chem. Phys. 2019, 150 (15), 15412210.1063/1.5090222. PubMed DOI

Togo A.; Tanaka I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5. 10.1016/j.scriptamat.2015.07.021. DOI

Červinka C. Tuning the quasi-harmonic treatment of crystalline ionic liquids within the density functional theory. J. Comput. Chem. 2022, 43 (7), 448–456. 10.1002/jcc.26804. PubMed DOI

Werner H.-J.; Adler T. B.; Manby F. R. General orbital invariant MP2-F12 theory. J. Chem. Phys. 2007, 126 (16), 16410210.1063/1.2712434. PubMed DOI

Burns L. A.; Marshall M. S.; Sherrill C. D. Appointing silver and bronze standards for noncovalent interactions: A comparison of spin-component-scaled (SCS), explicitly correlated (F12), and specialized wavefunction approaches. J. Chem. Phys. 2014, 141 (23), 23411110.1063/1.4903765. PubMed DOI

Werner H.-J.; Knowles P. J.; Knizia G.; Manby F. R.; Schütz M. Molpro: A General-Purpose Quantum Chemistry Program Package. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2 (2), 242–253. 10.1002/wcms.82. DOI

Štejfa V.; Vojtíšková O.; Pokorný V.; Rohlíček J.; Růžička K.; Fulem M., tba. J. Therm. Anal. Calorim. 2024, Submitted.

Höhne G. W. H.; Hemminger W. F.; Flammersheim H.-J.. Differential Scanning Calorimetry, 2nd ed.; Springer Verlag: Berlin, 2003.

Dudognon E.; Danède F.; Descamps M.; Correia N. T. Evidence for a New Crystalline Phase of Racemic Ibuprofen. Pharm. Res. 2008, 25 (12), 2853–2858. 10.1007/s11095-008-9655-7. PubMed DOI

Bannwarth C.; Ehlert S.; Grimme S. GFN2-xTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory Comput. 2019, 15 (3), 1652–1671. 10.1021/acs.jctc.8b01176. PubMed DOI

Červinka C.; Fulem M.; Růžička K. Evaluation of Accuracy of Ideal-Gas Heat Capacity and Entropy Calculations by Density Functional Theory (DFT) for Rigid Molecules. J. Chem. Eng. Data 2012, 57 (1), 227–232. 10.1021/je201095b. DOI

Merrick J. P.; Moran D.; Radom L. An Evaluation of Harmonic Vibrational Frequency Scale Factors. J. Phys. Chem. A 2007, 111 (45), 11683–11700. 10.1021/jp073974n. PubMed DOI

Munn R. W. Grüneisen parameters for molecular crystals. Phys. Rev. B 1975, 12 (8), 3491–3493. 10.1103/PhysRevB.12.3491. DOI

McConnell J. F. 2-(4-Isobutylphenyl) propionic acid. Cryst. Struct. Commun. 1974, 3, 73.

Shankland N.; Wilson C. C.; Florence A. J.; Cox P. J. Refinement of Ibuprofen at 100K by Single-Crystal Pulsed Neutron Diffraction. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1997, 53 (7), 951–954. 10.1107/S0108270197003193. DOI

Krishna Murthy H. M.; Bhat T. N.; Vijayan M. Structure of a new crystal form of 2-{[3-(trifluoromethyl)phenyl]amino}benzoic acid (flufenamic acid). Acta Crystallogr., Sect. B: Struct. Sci. 1982, 38 (1), 315–317. 10.1107/S0567740882002763. DOI

Drebushchak T. N.; Boldyreva E. V.; Mikhailenko M. A. Experimental Crystal Structure Determination. Zh. Strukt. Khim. 2008, 49, 90.

Stone K. H.; Lapidus S. H.; Stephens P. W. Implementation and use of robust refinement in powder diffraction in the presence of impurities. J. Appl. Crystallogr. 2009, 42 (3), 385–391. 10.1107/S0021889809008450. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace