First-Principles Models of Polymorphism of Pharmaceuticals: Maximizing the Accuracy-to-Cost Ratio
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38531828
PubMed Central
PMC11008097
DOI
10.1021/acs.jctc.4c00099
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Accuracy and sophistication of in silico models of structure, internal dynamics, and cohesion of molecular materials at finite temperatures increase over time. Applicability limits of ab initio polymorph ranking that would be feasible at reasonable costs currently represent crystals of moderately sized molecules (less than 20 nonhydrogen atoms) and simple unit cells (containing rather only one symmetry-irreducible molecule). Extending the applicability range of the underlying first-principles methods to larger systems with a real-life significance, and enabling to perform such computations in a high-throughput regime represent additional challenges to be tackled in computational chemistry. This work presents a novel composite method that combines the computational efficiency of density-functional tight-binding (DFTB) methods with the accuracy of density-functional theory (DFT). Being rooted in the quasi-harmonic approximation, it uses a cheap method to perform all of the costly scans of how static and dynamic characteristics of the crystal vary with respect to its volume. Such data are subsequently corrected to agree with a higher-level model, which must be evaluated only at a single volume of the crystal. It thus enables predictions of structural, cohesive, and thermodynamic properties of complex molecular materials, such as pharmaceuticals or organic semiconductors, at a fraction of the original computational cost. As the composite model retains the solid physical background, it suffers from a minimum accuracy deterioration compared to the full treatment with the costly approach. The novel methodology is demonstrated to provide consistent results for the structural and thermodynamic properties of real-life molecular crystals and their polymorph ranking.
Zobrazit více v PubMed
Heit Y. N.; Nanda K. D.; Beran G. J. O. Predicting Finite-Temperature Properties of Crystalline Carbon Dioxide from First Principles with Quantitative Accuracy. Chem. Sci. 2016, 7 (1), 246–255. 10.1039/C5SC03014E. PubMed DOI PMC
McKinley J. L.; Beran G. J. O. Identifying pragmatic quasi-harmonic electronic structure approaches for modeling molecular crystal thermal expansion. Faraday Discuss. 2018, 211 (0), 181–207. 10.1039/C8FD00048D. PubMed DOI
Červinka C.; Klajmon M.; Štejfa V. Cohesive Properties of Ionic Liquids Calculated from First Principles. J. Chem. Theory Comput. 2019, 15 (10), 5563–5578. 10.1021/acs.jctc.9b00625. PubMed DOI
Červinka C.; Štejfa V. Sublimation Properties of α,ω-Diamines Revisited from First-Principles Calculations. ChemPhysChem 2020, 21 (11), 1184–1194. 10.1002/cphc.202000108. PubMed DOI
George J.; Wang R. M.; Englert U.; Dronskowski R. Lattice thermal expansion and anisotropic displacements in urea, bromomalonic aldehyde, pentachloropyridine, and naphthalene. J. Chem. Phys. 2017, 147 (7), 07411210.1063/1.4985886. PubMed DOI
Pokorný V.; Touš P.; Štejfa V.; Růžička K.; Rohlíček J.; Czernek J.; Brus J.; Červinka C. Anisotropy, segmental dynamics and polymorphism of crystalline biogenic carboxylic acids. Phys. Chem. Chem. Phys. 2022, 24 (42), 25904–25917. 10.1039/D2CP03698C. PubMed DOI
Hirata S.; Gilliard K.; He X.; Li J.; Sode O. Ab Initio Molecular Crystal Structures, Spectra, and Phase Diagrams. Acc. Chem. Res. 2014, 47 (9), 2721–2730. 10.1021/ar500041m. PubMed DOI
Červinka C.; Fulem M.; Stoffel R. P.; Dronskowski R. Thermodynamic properties of molecular crystals calculated within the quasi-harmonic approximation. J. Phys. Chem. A 2016, 120, 2022–2034. 10.1021/acs.jpca.6b00401. PubMed DOI
Hong B. K.; Fang T.; Li W.; Li S. H. Predicting the structures and vibrational spectra of molecular crystals containing large molecules with the generalized energy-based fragmentation approach. J. Chem. Phys. 2023, 158 (4), 04411710.1063/5.0137072. PubMed DOI
Moellmann J.; Grimme S. DFT-D3 Study of Some Molecular Crystals. J. Phys. Chem. C 2014, 118 (14), 7615–7621. 10.1021/jp501237c. DOI
Klimeš J. Lattice energies of molecular solids from the random phase approximation with singles corrections. J. Chem. Phys. 2016, 145 (9), 09450610.1063/1.4962188. PubMed DOI
Brandenburg J. G.; Grimme S. Organic Crystal Polymorphism: A Benchmark for Dispersion-Corrected Mean-Field Electronic Structure Methods. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2016, 72, 502–513. 10.1107/S2052520616007885. PubMed DOI
Hoja J.; Reilly A. M.; Tkatchenko A. First-Principles Modeling of Molecular Crystals: Structures and Stabilities, Temperature and Pressure. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2017, 7 (1), e129410.1002/wcms.1294. DOI
Nyman J.; Day G. M. Modelling temperature-dependent properties of polymorphic organic molecular crystals. Phys. Chem. Chem. Phys. 2016, 18 (45), 31132–31143. 10.1039/C6CP05447A. PubMed DOI PMC
Dolgonos G. A.; Hoja J.; Boese A. D. Revised values for the X23 benchmark set of molecular crystals. Phys. Chem. Chem. Phys. 2019, 21 (44), 24333–24344. 10.1039/C9CP04488D. PubMed DOI
Červinka C.; Fulem M. State-of-the-Art Calculations of Sublimation Enthalpies for Selected Molecular Crystals and Their Computational Uncertainty. J. Chem. Theory Comput. 2017, 13, 2840–2850. 10.1021/acs.jctc.7b00164. PubMed DOI
Červinka C.; Fulem M. Probing the Accuracy of First-Principles Modeling of Molecular Crystals: Calculation of Sublimation Pressures. Cryst. Growth Des. 2019, 19 (2), 808–820. 10.1021/acs.cgd.8b01374. DOI
Xavier N. F.; Bauerfeldt G. F. Determination of the Cohesive Properties and Sublimation Temperatures of Glycine Polymorphs. Cryst. Growth Des. 2021, 21 (11), 6266–6275. 10.1021/acs.cgd.1c00724. DOI
Červinka C.; Beran G. J. O. Ab initio prediction of the polymorph phase diagram for crystalline methanol. Chem. Sci. 2018, 9 (20), 4622–4629. 10.1039/C8SC01237G. PubMed DOI PMC
Cook C.; McKinley J. L.; Beran G. J. O. Modeling the α- and β-resorcinol phase boundary via combination of density functional theory and density functional tight-binding. J. Chem. Phys. 2021, 154 (13), 13410910.1063/5.0044385. PubMed DOI PMC
Otero-de-la-Roza A.; Johnson E. R. A Benchmark for Non-Covalent Interactions in Solids. J. Chem. Phys. 2012, 137 (5), 05410310.1063/1.4738961. PubMed DOI
Reilly A. M.; Tkatchenko A. Understanding the Role of Vibrations, Exact Exchange, and Many-body van der Waals Interactions in the Cohesive Properties of Molecular Crystals. J. Chem. Phys. 2013, 139 (2), 02470510.1063/1.4812819. PubMed DOI
Cutini M.; Civalleri B.; Corno M.; Orlando R.; Brandenburg J. G.; Maschio L.; Ugliengo P. Assessment of Different Quantum Mechanical Methods for the Prediction of Structure and Cohesive Energy of Molecular Crystals. J. Chem. Theory Comput. 2016, 12 (7), 3340–3352. 10.1021/acs.jctc.6b00304. PubMed DOI
Weatherby J. A.; Rumson A. F.; Price A. J. A.; de la Roza A. O.; Johnson E. R. A density-functional benchmark of vibrational free-energy corrections for molecular crystal polymorphism. J. Chem. Phys. 2022, 156 (11), 11410810.1063/5.0083082. PubMed DOI
Thomas S. P.; Spackman P. R.; Jayatilaka D.; Spackman M. A. Accurate Lattice Energies for Molecular Crystals from Experimental Crystal Structures. J. Chem. Theory Comput. 2018, 14 (3), 1614–1623. 10.1021/acs.jctc.7b01200. PubMed DOI
Beran G. J. O. Modeling Polymorphic Molecular Crystals with Electronic Structure Theory. Chem. Rev. 2016, 116 (9), 5567–5613. 10.1021/acs.chemrev.5b00648. PubMed DOI
Beran G. J. O.; Sugden I. J.; Greenwell C.; Bowskill D. H.; Pantelides C. C.; Adjiman C. S. How many more polymorphs of ROY remain undiscovered. Chem. Sci. 2022, 13 (5), 1288–1297. 10.1039/D1SC06074K. PubMed DOI PMC
Price S. L.; Braun D. E.; Reutzel-Edens S. M. Can computed crystal energy landscapes help understand pharmaceutical solids?. Chem. Commun. 2016, 52 (44), 7065–7077. 10.1039/C6CC00721J. PubMed DOI PMC
Banks P. A.; Maul J.; Mancini M. T.; Whalley A. C.; Erba A.; Ruggiero M. T. Thermoelasticity in organic semiconductors determined with terahertz spectroscopy and quantum quasi-harmonic simulations. J. Mater. Chem. C 2020, 8 (31), 10917–10925. 10.1039/D0TC01676D. DOI
Talnack F.; Hutsch S.; Bretschneider M.; Krupskaya Y.; Büchner B.; Malfois M.; Hambsch M.; Ortmann F.; Mannsfeld S. C. B. Thermal behavior and polymorphism of 2,9-didecyldinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene thin films. Mol. Syst. Des. Eng. 2022, 7 (5), 507–519. 10.1039/D1ME00153A. DOI
Brandenburg J. G.; Potticary J.; Sparkes H. A.; Price S. L.; Hall S. R. Thermal Expansion of Carbamazepine: Systematic Crystallographic Measurements Challenge Quantum Chemical Calculations. J. Phys. Chem. Lett. 2017, 8 (17), 4319–4324. 10.1021/acs.jpclett.7b01944. PubMed DOI
Červinka C.; Štejfa V.; Pokorný V.; Touš P.; Růžička K. Orientational Disorder in Crystalline Disubstituted Benzenes and Its Implications for Sublimation and Polymorphism. Cryst. Growth Des. 2023, 23 (12), 9011–9024. 10.1021/acs.cgd.3c01057. DOI
Reilly A. M.; Cooper R. I.; Adjiman C. S.; Bhattacharya S.; Boese A. D.; Brandenburg J. G.; Bygrave P. J.; Bylsma R.; Campbell J. E.; Car R.; Case D. H.; Chadha R.; Cole J. C.; Cosburn K.; Cuppen H. M.; Curtis F.; Day G. M.; DiStasio Jr R. A.; Dzyabchenko A.; van Eijck B. P.; Elking D. M.; van den Ende J. A.; Facelli J. C.; Ferraro M. B.; Fusti-Molnar L.; Gatsiou C.-A.; Gee T. S.; de Gelder R.; Ghiringhelli L. M.; Goto H.; Grimme S.; Guo R.; Hofmann D. W. M.; Hoja J.; Hylton R. K.; Iuzzolino L.; Jankiewicz W.; de Jong D. T.; Kendrick J.; de Klerk N. J. J.; Ko H.-Y.; Kuleshova L. N.; Li X.; Lohani S.; Leusen F. J. J.; Lund A. M.; Lv J.; Ma Y.; Marom N.; Masunov A. E.; McCabe P.; McMahon D. P.; Meekes H.; Metz M. P.; Misquitta A. J.; Mohamed S.; Monserrat B.; Needs R. J.; Neumann M. A.; Nyman J.; Obata S.; Oberhofer H.; Oganov A. R.; Orendt A. M.; Pagola G. I.; Pantelides C. C.; Pickard C. J.; Podeszwa R.; Price L. S.; Price S. L.; Pulido A.; Read M. G.; Reuter K.; Schneider E.; Schober C.; Shields G. P.; Singh P.; Sugden I. J.; Szalewicz K.; Taylor C. R.; Tkatchenko A.; Tuckerman M. E.; Vacarro F.; Vasileiadis M.; Vazquez-Mayagoitia A.; Vogt L.; Wang Y.; Watson R. E.; de Wijs G. A.; Yang J.; Zhu Q.; Groom C. R. Report on the sixth blind test of organic crystal structure prediction methods. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2016, 72 (4), 439–459. 10.1107/S2052520616007447. PubMed DOI PMC
Kapil V.; Engel E. A. A complete description of thermodynamic stabilities of molecular crystals. Proc. Natl. Acad. Sci. U.S.A. 2022, 119 (6), e211176911910.1073/pnas.2111769119. PubMed DOI PMC
Cook C.; Beran G. J. O. Reduced-cost supercell approach for computing accurate phonon density of states in organic crystals. J. Chem. Phys. 2020, 153 (22), 22410510.1063/5.0032649. PubMed DOI
Stoffel R. P.; Wessel C.; Lumey M.-W.; Dronskowski R. Ab Initio Thermochemistry of Solid-State Materials. Angew. Chem., Int. Ed. 2010, 49 (31), 5242–5266. 10.1002/anie.200906780. PubMed DOI
Groom C. R.; Bruno I. J.; Lightfoot M. P.; Ward S. C. The Cambridge Structural Database. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2016, 72 (2), 171–179. 10.1107/S2052520616003954. PubMed DOI PMC
Ostrowska K.; Kropidłowska M.; Katrusiak A. High-Pressure Crystallization and Structural Transformations in Compressed R,S-Ibuprofen. Cryst. Growth Des. 2015, 15 (3), 1512–1517. 10.1021/cg5018888. DOI
Štejfa V.; Pokorný V.; Mathers A.; Růžička K.; Fulem M. Heat capacities of selected active pharmaceutical ingredients. J. Chem. Thermodyn. 2021, 163, 10658510.1016/j.jct.2021.106585. DOI
Derollez P.; Dudognon E.; Affouard F.; Danede F.; Correia N. T.; Descamps M. Ab initio structure determination of phase II of racemic ibuprofen by X-ray powder diffraction. Acta Crystallogr., Sect. B: Struct. Sci. 2010, 66 (1), 76–80. 10.1107/S0108768109047363. PubMed DOI
King M. D.; Buchanan W. D.; Korter T. M. Understanding the Terahertz Spectra of Crystalline Pharmaceuticals: Terahertz Spectroscopy and Solid-State Density Functional Theory Study of (S)-(+)-Ibuprofen and (RS)-Ibuprofen. J. Pharm. Sci. 2011, 100 (3), 1116–1129. 10.1002/jps.22339. PubMed DOI
López-Mejías V.; Kampf J. W.; Matzger A. J. Nonamorphism in Flufenamic Acid and a New Record for a Polymorphic Compound with Solved Structures. J. Am. Chem. Soc. 2012, 134 (24), 9872–9875. 10.1021/ja302601f. PubMed DOI PMC
Delaney S. P.; Smith T. M.; Korter T. M. Conformational origins of polymorphism in two forms of flufenamic acid. J. Mol. Struct. 2014, 1078, 83–89. 10.1016/j.molstruc.2014.02.001. DOI
Sovago I.; Gutmann M. J.; Hill J. G.; Senn H. M.; Thomas L. H.; Wilson C. C.; Farrugia L. J. Experimental Electron Density and Neutron Diffraction Studies on the Polymorphs of Sulfathiazole. Cryst. Growth Des. 2014, 14 (3), 1227–1239. 10.1021/cg401757z. PubMed DOI PMC
Abu Bakar M. R.; Nagy Z. K.; Rielly C. D.; Dann S. E. Investigation of the riddle of sulfathiazole polymorphism. Int. J. Pharm. 2011, 414 (1), 86–103. 10.1016/j.ijpharm.2011.05.004. PubMed DOI
Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865–3868. 10.1103/PhysRevLett.77.3865. PubMed DOI
Grimme S.; Ehrlich S.; Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32 (7), 1456–1465. 10.1002/jcc.21759. PubMed DOI
Kresse G.; Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54 (16), 11169–11186. 10.1103/PhysRevB.54.11169. PubMed DOI
Kresse G.; Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6 (1), 15–50. 10.1016/0927-0256(96)00008-0. DOI
Blöchl P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50 (24), 17953–17979. 10.1103/PhysRevB.50.17953. PubMed DOI
Kresse G.; Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59 (3), 1758–1775. 10.1103/PhysRevB.59.1758. DOI
Monkhorst H. J.; Pack J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13 (12), 5188–5192. 10.1103/PhysRevB.13.5188. DOI
Touš P.; Červinka C. Dynamic Disorder, Strain, and Sublimation of Crystalline Caged Hydrocarbons from First Principles. Cryst. Growth Des. 2023, 23 (6), 4082–4097. 10.1021/acs.cgd.2c01496. DOI
Gaus M.; Cui Q.; Elstner M. DFTB3: Extension of the Self-Consistent-Charge Density-Functional Tight-Binding Method (SCC-DFTB). J. Chem. Theory Comput. 2011, 7 (4), 931–948. 10.1021/ct100684s. PubMed DOI PMC
Hourahine B.; Aradi B.; Blum V.; Bonafé F.; Buccheri A.; Camacho C.; Cevallos C.; Deshaye M. Y.; Dumitrică T.; Dominguez A.; Ehlert S.; Elstner M.; van der Heide T.; Hermann J.; Irle S.; Kranz J. J.; Köhler C.; Kowalczyk T.; Kubař T.; Lee I. S.; Lutsker V.; Maurer R. J.; Min S. K.; Mitchell I.; Negre C.; Niehaus T. A.; Niklasson A. M. N.; Page A. J.; Pecchia A.; Penazzi G.; Persson M. P.; Řezáč J.; Sánchez C. G.; Sternberg M.; Stöhr M.; Stuckenberg F.; Tkatchenko A.; Yu V. W.-z.; Frauenheim T. DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. J. Chem. Phys. 2020, 152 (12), 12410110.1063/1.5143190. PubMed DOI
Gaus M.; Goez A.; Elstner M. Parametrization and Benchmark of DFTB3 for Organic Molecules. J. Chem. Theory Comput. 2013, 9 (1), 338–354. 10.1021/ct300849w. PubMed DOI
Kubillus M.; Kubař T.; Gaus M.; Řezáč J.; Elstner M. Parameterization of the DFTB3Method for Br, Ca, Cl, F, I, K, and Na in Organic and Biological Systems. J. Chem. Theory Comput. 2015, 11 (1), 332–342. 10.1021/ct5009137. PubMed DOI
Caldeweyher E.; Ehlert S.; Hansen A.; Neugebauer H.; Spicher S.; Bannwarth C.; Grimme S. A generally applicable atomic-charge dependent London dispersion correction. J. Chem. Phys. 2019, 150 (15), 15412210.1063/1.5090222. PubMed DOI
Togo A.; Tanaka I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5. 10.1016/j.scriptamat.2015.07.021. DOI
Červinka C. Tuning the quasi-harmonic treatment of crystalline ionic liquids within the density functional theory. J. Comput. Chem. 2022, 43 (7), 448–456. 10.1002/jcc.26804. PubMed DOI
Werner H.-J.; Adler T. B.; Manby F. R. General orbital invariant MP2-F12 theory. J. Chem. Phys. 2007, 126 (16), 16410210.1063/1.2712434. PubMed DOI
Burns L. A.; Marshall M. S.; Sherrill C. D. Appointing silver and bronze standards for noncovalent interactions: A comparison of spin-component-scaled (SCS), explicitly correlated (F12), and specialized wavefunction approaches. J. Chem. Phys. 2014, 141 (23), 23411110.1063/1.4903765. PubMed DOI
Werner H.-J.; Knowles P. J.; Knizia G.; Manby F. R.; Schütz M. Molpro: A General-Purpose Quantum Chemistry Program Package. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2 (2), 242–253. 10.1002/wcms.82. DOI
Štejfa V.; Vojtíšková O.; Pokorný V.; Rohlíček J.; Růžička K.; Fulem M., tba. J. Therm. Anal. Calorim. 2024, Submitted.
Höhne G. W. H.; Hemminger W. F.; Flammersheim H.-J.. Differential Scanning Calorimetry, 2nd ed.; Springer Verlag: Berlin, 2003.
Dudognon E.; Danède F.; Descamps M.; Correia N. T. Evidence for a New Crystalline Phase of Racemic Ibuprofen. Pharm. Res. 2008, 25 (12), 2853–2858. 10.1007/s11095-008-9655-7. PubMed DOI
Bannwarth C.; Ehlert S.; Grimme S. GFN2-xTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory Comput. 2019, 15 (3), 1652–1671. 10.1021/acs.jctc.8b01176. PubMed DOI
Červinka C.; Fulem M.; Růžička K. Evaluation of Accuracy of Ideal-Gas Heat Capacity and Entropy Calculations by Density Functional Theory (DFT) for Rigid Molecules. J. Chem. Eng. Data 2012, 57 (1), 227–232. 10.1021/je201095b. DOI
Merrick J. P.; Moran D.; Radom L. An Evaluation of Harmonic Vibrational Frequency Scale Factors. J. Phys. Chem. A 2007, 111 (45), 11683–11700. 10.1021/jp073974n. PubMed DOI
Munn R. W. Grüneisen parameters for molecular crystals. Phys. Rev. B 1975, 12 (8), 3491–3493. 10.1103/PhysRevB.12.3491. DOI
McConnell J. F. 2-(4-Isobutylphenyl) propionic acid. Cryst. Struct. Commun. 1974, 3, 73.
Shankland N.; Wilson C. C.; Florence A. J.; Cox P. J. Refinement of Ibuprofen at 100K by Single-Crystal Pulsed Neutron Diffraction. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1997, 53 (7), 951–954. 10.1107/S0108270197003193. DOI
Krishna Murthy H. M.; Bhat T. N.; Vijayan M. Structure of a new crystal form of 2-{[3-(trifluoromethyl)phenyl]amino}benzoic acid (flufenamic acid). Acta Crystallogr., Sect. B: Struct. Sci. 1982, 38 (1), 315–317. 10.1107/S0567740882002763. DOI
Drebushchak T. N.; Boldyreva E. V.; Mikhailenko M. A. Experimental Crystal Structure Determination. Zh. Strukt. Khim. 2008, 49, 90.
Stone K. H.; Lapidus S. H.; Stephens P. W. Implementation and use of robust refinement in powder diffraction in the presence of impurities. J. Appl. Crystallogr. 2009, 42 (3), 385–391. 10.1107/S0021889809008450. DOI