Ab initio prediction of the polymorph phase diagram for crystalline methanol
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29899955
PubMed Central
PMC5969506
DOI
10.1039/c8sc01237g
PII: c8sc01237g
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Organic crystals frequently adopt multiple distinct polymorphs exhibiting different properties. The ability to predict not only what crystal forms might occur, but under what experimental thermodynamic conditions those polymorphs are stable would be immensely valuable to the pharmaceutical industry and others. Starting only from knowledge of the experimental crystal structures, this study successfully predicts the methanol crystal polymorph phase diagram from first-principles quantum chemistry, mapping out the thermodynamic regions of stability for three polymorphs over the range 0-400 K and 0-6 GPa. The agreement between the predicted and experimental phase diagrams corresponds to predicting the relative polymorph free energies to within ∼0.5 kJ mol-1 accuracy, which is achieved by employing fragment-based second-order Møller-Plesset perturbation theory and coupled cluster theory plus a quasi-harmonic treatment of the phonons.
Zobrazit více v PubMed
Price S. L., Braun D. E., Reutzel-Edens S. M. Chem. Commun. 2016;52:7065–7077. PubMed PMC
Price S. L. Chem. Soc. Rev. 2014;43:2098–2111. PubMed
Zurek E., Discovering New Materials via A Priori Crystal Structure Prediction, in Reviews in Computational Chemistry, ed. K. B. Lipkowitz, Wiley, New York, 2016, vol. 29, pp. 274–326..
Baias M., Dumez J.-N., Svensson P. H., Schantz S., Day G. M., Emsley L. J. Am. Chem. Soc. 2013;135:17501–17507. PubMed
Neumann M. A., van de Streek J., Fabbiani F. P. A., Hidber P., Grassmann O. Nat. Commun. 2015;6:7793. PubMed PMC
Pulido A. Nature. 2017;543:657–664. PubMed PMC
Beran G. J. O. Chem. Rev. 2016;116:5567–5613. PubMed
Hoja J., Reilly A. M., Tkatchenko A. WIREs Comput. Mol. Sci. 2017;7:e1294.
Grimme S., Hansen A., Brandenburg J. G., Bannwarth C. Chem. Rev. 2016;116:5105–5154. PubMed
Brandenburg J. G., Grimme S. J. Phys. Chem. Lett. 2014;5:1785–1789. PubMed
Day G. M., Cooper T. G., Cruz-Cabeza A. J., Hejczyk K. E., Ammon H. L., Boerrigter S. X. M., Tan J. S., Della Valle R. G., Venuti E., Jose J., Gadre S. R., Desiraju G. R., Thakur T. S., van Eijck B. P., Facelli J. C., Bazterra V. E., Ferraro M. B., Hofmann D. W. M., Neumann M. A., Leusen F. J. J., Kendrick J., Price S. L., Misquitta A. J., Karamertzanis P. G., Welch G. W. A., Scheraga H. A., Arnautova Y. A., Schmidt M. U., van de Streek J., Wolf A. K., Schweizer B. Acta Crystallogr., Sect. B: Struct. Sci. 2009;65:107–125. PubMed
Bardwell D. A., Adjiman C. S., Arnautova Y. A., Bartashevich E., Boerrigter S. X. M., Braun D. E., Cruz-Cabeza A. J., Day G. M., Della Valle R. G., Desiraju G. R., van Eijck B. P., Facelli J. C., Ferraro M. B., Grillo D., Habgood M., Hofmann D. W. M., Hofmann F., Jose K. V. J., Karamertzanis P. G., Kazantsev A. V., Kendrick J., Kuleshova L. N., Leusen F. J. J., Maleev A. V., Misquitta A. J., Mohamed S., Needs R. J., Neumann M. A., Nikylov D., Orendt A. M., Pal R., Pantelides C. C., Pickard C. J., Price L. S., Price S. L., Scheraga H. A., van de Streek J., Thakur T. S., Tiwari S., Venuti E., Zhitkov I. K. Acta Crystallogr., Sect. B: Struct. Sci. 2011;67:535–551. PubMed PMC
Reilly A. M., Cooper R. I., Adjiman C. S., Bhattacharya S., Boese A. D., Brandenburg J. G., Bygrave P. J., Bylsma R., Campbell J. E., Car R., Case D. H., Chadha R., Cole J. C., Cosburn K., Cuppen H. M., Curtis F., Day G. M., DiStasio Jr R. A., Dzyabchenko A., van Eijck B. P., Elking D. M., van den Ende J. A., Facelli J. C., Ferraro M. B., Fusti-Molnar L., Gatsiou C.-A., Gee T. S., de Gelder R., Ghiringhelli L. M., Goto H., Grimme S., Guo R., Hofmann D. W. M., Hoja J., Hylton R. K., Iuzzolino L., Jankiewicz W., de Jong D. T., Kendrick J., de Klerk N. J. J., Ko H.-Y., Kuleshova L. N., Li X., Lohani S., Leusen F. J. J., Lund A. M., Lv J., Ma Y., Marom N., Masunov A. E., McCabe P., McMahon D. P., Meekes H., Metz M. P., Misquitta A. J., Mohamed S., Monserrat B., Needs R. J., Neumann M. A., Nyman J., Obata S., Oberhofer H., Oganov A. R., Orendt A. M., Pagola G. I., Pantelides C. C., Pickard C. J., Podeszwa R., Price L. S., Price S. L., Pulido A., Read M. G., Reuter K., Schneider E., Schober C., Shields G. P., Singh P., Sugden I. J., Szalewicz K., Taylor C. R., Tkatchenko A., Tuckerman M. E., Vacarro F., Vasileiadis M., Vazquez-Mayagoitia A., Vogt L., Wang Y., Watson R. E., de Wijs G. A., Yang J., Zhu Q., Groom C. R. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2016;72:439–459. PubMed PMC
Beran G. J. O. Nat. Mater. 2017;16:602–604. PubMed
Nyman J., Day G. M. CrystEngComm. 2015;17:5154–5165.
Nyman J., Day G. M. Phys. Chem. Chem. Phys. 2016;18:31132–31143. PubMed PMC
Yang J., Hu W., Usvyat D., Matthews D., Schutz M., Chan G. K.-L. Science. 2014;345:640–643. PubMed
Würflinger A., Landau R. J. Phys. Chem. Solids. 1977;38:811–814.
Gromnitskaya E. L., Stal'gorova O. V., Yagafarov O. F., Brazhkin V. V., Lyapin A. G., Popova S. V. J. Exp. Theor. Phys. Lett. 2004;80:597–601.
Kondrin M. V., Pronin A. A., Lebed Y. B., Brazhkin V. V. J. Chem. Phys. 2013;139:084510. PubMed
Schön J. C., Jansen M. Int. J. Mater. Res. 2009;100:135–152.
Revard B. C., Tipton W. W., Hennig R. G. Top. Curr. Chem. 2014;345:181–222. PubMed
Schatschneider B., Liang J.-J., Jezowski S., Tkatchenko A. CrystEngComm. 2012;14:4656–4663.
Griffiths G. I., Misquitta A. J., Fortes A. D., Pickard C. J., Needs R. J. J. Chem. Phys. 2012;137:064506. PubMed
Heit Y. N., Nanda K. D., Beran G. J. O. Chem. Sci. 2016;7:246–255. PubMed PMC
Raiteri P., Martonák R., Parrinello M. Angew. Chem., Int. Ed. 2005;44:3769–3773. PubMed
Schneider E., Vogt L., Tuckerman M. E. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2016;72:542–550. PubMed
Dybeck E. C., Abraham N. S., Schieber N. P., Shirts M. R. Cryst. Growth Des. 2017;17:1775–1787.
Schieber N. P., Dybeck E. C., Shirts M. R. J. Chem. Phys. 2018;148:144104. PubMed
Bonev S. A., Gygi F., Ogitsu T., Galli G. Phys. Rev. Lett. 2003;91:065501. PubMed
Vega C., Abascal J. L. F., Sanz E., MacDowell L. G., McBride C. J. Phys.: Condens. Matter. 2005;17:S3283–S3288.
Wang L.-P., Head-Gordon T., Ponder J. W., Ren P., Chodera J. D., Eastman P. K., Martinez T. J., Pande V. S. J. Phys. Chem. B. 2013;117:9956–9972. PubMed PMC
Kirchner M. T., Das D., Boese R. Cryst. Growth Des. 2008;8:763–765.
Allan D. R., Clark S. J., Brugmans M. J. P., Ackland G. J., Vos W. L. Phys. Rev. B. 1998;58:R11809–R11812.
Stoffel R. P., Wessel C., Lumey M.-W., Dronskowski R. Angew. Chem., Int. Ed. 2010;49:5242–5266. PubMed
Červinka C., Fulem M., Stoffel R. P., Dronskowski R. J. Phys. Chem. A. 2016;120:2022–2034. PubMed
Beran G. J. O., Nanda K. J. Phys. Chem. Lett. 2010;1:3480–3487.
Ren P., Wu C., Ponder J. W. J. Chem. Theory Comput. 2011;7:3143–3161. PubMed PMC
Wen S., Beran G. J. O. J. Chem. Theory Comput. 2012;8:2698–2705. PubMed
Heit Y. N., Beran G. J. O. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2016;72:514–529. PubMed
Sontising W., Heit Y. N., McKinley J. L., Beran G. J. O. Chem. Sci. 2017;8:7374–7382. PubMed PMC
Červinka C., Beran G. J. O. Phys. Chem. Chem. Phys. 2017;19:29940–29953. PubMed
McKinley J. L., Beran G. J. O. Faraday Discuss. 2018 doi: 10.1039/c8fd00048d. PubMed DOI
Červinka C., Fulem M. J. Chem. Theory Comput. 2017;13:2840–2850. PubMed
Nagayoshi K., Kitaura K., Koseki S., Re S., Kobayashi K., Choe Y.-K., Nagase S. Chem. Phys. Lett. 2003;369:597–604.
Červinka C., Fulem M., RůŽička K. J. Chem. Phys. 2016;144:064505. PubMed
Carlson H. G., Westrum E. F. J. Chem. Phys. 1971;54:1464–1471.
Gonzalez Salgado D., Vega C. J. Chem. Phys. 2010;132:094505. PubMed
Gonzalez-Salgado D., Dopazo-Paz A., Gomez-Alvarez P., Miguez J. M., Vega C. J. Phys. Chem. B. 2011;115:3522–3530. PubMed
Tauer K. J., Lipscomb W. N. Acta Crystallogr. 1952;5:606–612.
Durig J. R., Pate C. B., Li Y. S., Antion D. J. J. Chem. Phys. 1971;54:4863.
Anderson A., Andrews B., Meiering E. M., Torrie B. H. J. Raman Spectrosc. 1988;19:85–89.
Torrie B., Weng S.-X., Powell B. Mol. Phys. 1989;67:575–581.
Tycko R., Dabbagh G. J. Am. Chem. Soc. 1991;113:3592–3593.
Robyr P., Meier B. H., Fischer P., Ernst R. R. J. Am. Chem. Soc. 1994;116:5315–5323.
Torrie B. H., Binbrek O. S., Strauss M., Swainson I. P. J. Solid State Chem. 2002;166:415–420.
Habgood M., Grau-Crespo R., Price S. L. Phys. Chem. Chem. Phys. 2011;13:9590–9600. PubMed
Muller C., Spangberg D. J. Comput. Chem. 2015;36:1420–1427. PubMed
Lin T.-J., Hsing C.-R., Wei C.-M., Kuo J.-L. Phys. Chem. Chem. Phys. 2016;18:2736–2746. PubMed
Brandenburg J. G., Potticary J., Sparkes H. A., Price S. L., Hall S. R. J. Phys. Chem. Lett. 2017;8:4319–4324. PubMed
Heinlein R. A., “Where To?” in Expanded Universe, Ace Science Fiction, New York, 1980, p. 348.
Dunning T. H. J. Chem. Phys. 1989;90:1007–1023.
Werner H.-J., Knowles P. J., Knizia G., Manby F. R., Schütz M., Celani P., Korona T., Lindh R., Mitrushenkov A., Rauhut G., Shamasundar K. R., Adler T. B., Amos R. D., Bernhardsson A., Berning A., Cooper D. L., Deegan M. J. O., Dobbyn A. J., Eckert F., Goll E., Hampel C., Hesselmann A., Hetzer G., Hrenar T., Jansen G., Köppl C., Liu Y., Lloyd A. W., Mata R. A., May A. J., McNicholas S. J., Meyer W., Mura M. E., Nicklass A., O'Neill D. P., Palmieri P., Peng D., Pflüger K., Pitzer R., Reiher M., Shiozaki T., Stoll H., Stone A. J., Tarroni R., Thorsteinsson T., and Wang M., MOLPRO, version 1, a package of ab initio programs, 2012, see http://www.molpro.net.
Ponder J. W., TINKER v6.2, http://dasher.wustl.edu/tinker/, accessed May 15, 2014.
Peintinger M. F., Oliveira D. V., Bredow T. J. Comput. Chem. 2013;34:451–459. PubMed
Dovesi R., Orlando R., Civalleri B., Roetti C., Saunders V. R., Zicovich-Wilson C. M. Z. Kristallogr. 2005;220:571–573.
Karton A., Martin J. M. L. Theor. Chem. Acc. 2006;115:330–333.
Helgaker T., Klopper W., Koch H., Noga J. J. Chem. Phys. 1997;106:9639–9646.
The seventh blind test of crystal structure prediction: structure ranking methods
First-Principles Models of Polymorphism of Pharmaceuticals: Maximizing the Accuracy-to-Cost Ratio