Multi-Level Coupled-Cluster Description of Crystal Lattice Energies
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40439433
PubMed Central
PMC12159999
DOI
10.1021/acs.jctc.5c00428
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The many-body expansion (MBE) of the lattice energy enables an ab initio description of molecular solids using correlated wave function approximations. However, the practical application of MBE requires computing the large number of n-body contributions efficiently. To this end, we employ a multi-level coupled-cluster approach which adapts the approximation level based on interaction type and intermolecular distance. The high-level method, including connected triple excitations, is applied only to monomer relaxation and dimer interactions roughly within the first and second coordination shells. Long-range dimers and trimers are treated using a simplified coupled-cluster description based on the random-phase approximation (RPA). A key feature is an energy correction which mitigates the underbinding error of the base RPA. Convergence to the bulk limit is accelerated by the addition of the periodic Hartree-Fock correction. The proposed approach is validated against recent diffusion Monte Carlo reference data for the X23 data set, achieving a mean absolute error of 3.1 kJ/mol, i.e., chemical accuracy for absolute lattice energies.
Zobrazit více v PubMed
Maddox J.. Crystals from first principles. Nature. 1988;335:201. doi: 10.1038/335201a0. DOI
Reilly A. M., Cooper R. I., Adjiman C. S., Bhattacharya S., Boese A. D., Brandenburg J. G., Bygrave P. J., Bylsma R., Campbell J. E., Car R., Case D. H., Chadha R., Cole J. C., Cosburn K., Cuppen H. M., Curtis F., Day G. M., DiStasio R. A. Jr, Dzyabchenko A., van Eijck B. P., Elking D. M., van den Ende J. A., Facelli J. C., Ferraro M. B., Fusti-Molnar L., Gatsiou C.-A., Gee T. S., de Gelder R., Ghiringhelli L. M., Goto H., Grimme S., Guo R., Hofmann D. W. M., Hoja J., Hylton R. K., Iuzzolino L., Jankiewicz W., de Jong D. T., Kendrick J., de Klerk N. J. J., Ko H.-Y., Kuleshova L. N., Li X., Lohani S., Leusen F. J. J., Lund A. M., Lv J., Ma Y., Marom N., Masunov A. E., McCabe P., McMahon D. P., Meekes H., Metz M. P., Misquitta A. J., Mohamed S., Monserrat B., Needs R. J., Neumann M. A., Nyman J., Obata S., Oberhofer H., Oganov A. R., Orendt A. M., Pagola G. I., Pantelides C. C., Pickard C. J., Podeszwa R., Price L. S., Price S. L., Pulido A., Read M. G., Reuter K., Schneider E., Schober C., Shields G. P., Singh P., Sugden I. J., Szalewicz K., Taylor C. R., Tkatchenko A., Tuckerman M. E., Vacarro F., Vasileiadis M., Vazquez-Mayagoitia A., Vogt L., Wang Y., Watson R. E., de Wijs G. A., Yang J., Zhu Q., Groom C. R.. Report on the sixth blind test of organic crystal structure prediction methods. Acta Crystallogr., Sect. B:Struct. Sci., Cryst. Eng. Mater. 2016;72:439–459. doi: 10.1107/S2052520616007447. PubMed DOI PMC
Hunnisett L. M., Nyman J., Francia N., Abraham N. S., Adjiman C. S., Aitipamula S., Alkhidir T., Almehairbi M., Anelli A., Anstine D. M., Anthony J. E., Arnold J. E., Bahrami F., Bellucci M. A., Bhardwaj R. M., Bier I., Bis J. A., Boese A. D., Bowskill D. H., Bramley J., Brandenburg J. G., Braun D. E., Butler P. W. V., Cadden J., Carino S., Chan E. J., Chang C., Cheng B., Clarke S. M., Coles S. J., Cooper R. I., Couch R., Cuadrado R., Darden T., Day G. M., Dietrich H., Ding Y., DiPasquale A., Dhokale B., van Eijck B. P., Elsegood M. R. J., Firaha D., Fu W., Fukuzawa K., Glover J., Goto H., Greenwell C., Guo R., Harter J., Helfferich J., Hofmann D. W. M., Hoja J., Hone J., Hong R., Hutchison G., Ikabata Y., Isayev O., Ishaque O., Jain V., Jin Y., Jing A., Johnson E. R., Jones I., Jose K. V. J., Kabova E. A., Keates A., Kelly P. F., Khakimov D., Konstantinopoulos S., Kuleshova L. N., Li H., Lin X., List A., Liu C., Liu Y. M., Liu Z., Liu Z.-P., Lubach J. W., Marom N., Maryewski A. A., Matsui H., Mattei A., Mayo R. A., Melkumov J. W., Mohamed S., Momenzadeh Abardeh Z., Muddana H. S., Nakayama N., Nayal K. S., Neumann M. A., Nikhar R., Obata S., O’Connor D., Oganov A. R., Okuwaki K., Otero-de-la Roza A., Pantelides C. C., Parkin S., Pickard C. J., Pilia L., Pivina T., Podeszwa R., Price A. J. A., Price L. S., Price S. L., Probert M. R., Pulido A., Ramteke G. R., Rehman A. U., Reutzel-Edens S. M., Rogal J., Ross M. J., Rumson A. F., Sadiq G., Saeed Z. M., Salimi A., Salvalaglio M., de Almada L. S., Sasikumar K., Sekharan S., Shang C., Shankland K., Shinohara K., Shi B., Shi X., Skillman A. G., Song H., Strasser N., van de Streek J., Sugden I. J., Sun G., Szalewicz K., Tan B. I., Tan L., Tarczynski F., Taylor C. R., Tkatchenko A., Tom R., Tuckerman M. E., Utsumi Y., Vogt-Maranto L., Weatherston J., Wilkinson L. J., Willacy R. D., Wojtas L., Woollam G. R., Yang Z., Yonemochi E., Yue X., Zeng Q., Zhang Y., Zhou T., Zhou Y., Zubatyuk R., Cole J. C.. The seventh blind test of crystal structure prediction: structure generation methods. Acta Crystallogr., Sect. B:Struct. Sci., Cryst. Eng. Mater. 2024;80:517–547. doi: 10.1107/S2052520624007492. PubMed DOI PMC
Bučar D., Lancaster R. W., Bernstein J.. Disappearing polymorphs revisited. Angew. Chem., Int. Ed. 2015;54:6972–6993. doi: 10.1002/anie.201410356. PubMed DOI PMC
Neumann M. A., van de Streek J.. How many ritonavir cases are there still out there? Faraday Discuss. 2018;211:441–458. doi: 10.1039/C8FD00069G. PubMed DOI
Firaha D., Liu Y. M., van de Streek J., Sasikumar K., Dietrich H., Helfferich J., Aerts L., Braun D. E., Broo A., DiPasquale A. G., Lee A. Y., Le Meur S., Nilsson Lill S. O., Lunsmann W. J., Mattei A., Muglia P., Putra O. D., Raoui M., Reutzel-Edens S. M., Rome S., Sheikh A. Y., Tkatchenko A., Woollam G. R., Neumann M. A.. Predicting crystal form stability under real-world conditions. Nature. 2023;623:324. doi: 10.1038/s41586-023-06587-3. PubMed DOI PMC
Nyman J., Day G. M.. Static and lattice vibrational energy differences between polymorphs. CrystEngComm. 2015;17:5154–5165. doi: 10.1039/C5CE00045A. DOI
Greenwell C., McKinley J. L., Zhang P., Zeng Q., Sun G., Li B., Wen S., Beran G. J.. Overcoming the difficulties of predicting conformational polymorph energetics in molecular crystals via correlated wavefunction methods. Chem. Sci. 2020;11:2200–2214. doi: 10.1039/C9SC05689K. PubMed DOI PMC
Hermann J., DiStasio R. A. Jr., Tkatchenko A.. First-Principles Models for van der Waals Interactions in Molecules and Materials: Concepts, Theory, and Applications. Chem. Rev. 2017;117:4714–4758. doi: 10.1021/acs.chemrev.6b00446. PubMed DOI
Grimme S., Hansen A., Brandenburg J. G., Bannwarth C.. Dispersion-corrected mean-field electronic structure methods. Chem. Rev. 2016;116:5105–5154. doi: 10.1021/acs.chemrev.5b00533. PubMed DOI
Brandenburg J. G., Grimme S.. Organic crystal polymorphism: a benchmark for dispersion-corrected mean-field electronic structure methods. Acta Crystallogr., Sect. B:Struct. Sci., Cryst. Eng. Mater. 2016;72:502–513. doi: 10.1107/S2052520616007885. PubMed DOI
Whittleton S. R., Otero-De-La-Roza A., Johnson E. R.. Exchange-hole dipole dispersion model for accurate energy ranking in molecular crystal structure prediction. J. Chem. Theory Comput. 2017;13:441–450. doi: 10.1021/acs.jctc.6b00679. PubMed DOI
Otero-De-La-Roza A., Johnson E. R.. A benchmark for non-covalent interactions in solids. J. Chem. Phys. 2012;137:054103. doi: 10.1063/1.4738961. PubMed DOI
Reilly A. M., Tkatchenko A.. Seamless and accurate modeling of organic molecular materials. J. Phys. Chem. Lett. 2013;4:1028–1033. doi: 10.1021/jz400226x. PubMed DOI
Reilly A. M., Tkatchenko A.. Understanding the role of vibrations, exact exchange, and many-body van der Waals interactions in the cohesive properties of molecular crystals. J. Chem. Phys. 2013;139:024705. doi: 10.1063/1.4812819. PubMed DOI
Price A. J. A., Otero-de-la Roza A., Johnson E. R.. XDM-corrected hybrid DFT with numerical atomic orbitals predicts molecular crystal lattice energies with unprecedented accuracy. Chem. Sci. 2023;14:1252–1262. doi: 10.1039/D2SC05997E. PubMed DOI PMC
Yang J., Hu W., Usvyat D., Matthews D., Schütz M., Chan G. K.-L.. Ab initio determination of the crystalline benzene lattice energy to sub-kilojoule/mol accuracy. Science. 2014;345:640–643. doi: 10.1126/science.1254419. PubMed DOI
Booth G. H., Grüneis A., Kresse G., Alavi A.. Towards an exact description of electronic wavefunctions in real solids. Nature. 2013;493:365–370. doi: 10.1038/nature11770. PubMed DOI
Ye H.-Z., Berkelbach T. C.. Periodic Local Coupled-Cluster Theory for Insulators and Metals. J. Chem. Theory Comput. 2024;20:8948–8959. doi: 10.1021/acs.jctc.4c00936. PubMed DOI
Zen A., Brandenburg J. G., Klimes J., Tkatchenko A., Alfe D., Michaelides A.. Fast and accurate quantum Monte Carlo for molecular crystals. Proc. Natl. Acad. Sci. U.S.A. 2018;115:1724–1729. doi: 10.1073/pnas.1715434115. PubMed DOI PMC
Beran G. J. O.. Modeling polymorphic molecular crystals with electronic structure theory. Chem. Rev. 2016;116:5567–5613. doi: 10.1021/acs.chemrev.5b00648. PubMed DOI
Herman K. M., Xantheas S. S.. A formulation of the many-body expansion (MBE) for periodic systems: Application to several ice phases. J. Phys. Chem. Lett. 2023;14:989–999. doi: 10.1021/acs.jpclett.2c03822. PubMed DOI
Hongo K., Watson M. A., Iitaka T., Aspuru-Guzik A., Maezono R.. Diffusion Monte Carlo study of para-diiodobenzene polymorphism revisited. J. Chem. Theory Comput. 2015;11:907–917. doi: 10.1021/ct500401p. PubMed DOI
Pia F., Zen A., Alfè D., Michaelides A.. How accurate are simulations and experiments for the lattice energies of molecular crystals? Phys. Rev. Lett. 2024;133:046401. doi: 10.1103/PhysRevLett.133.046401. PubMed DOI
Bygrave P. J., Allan N., Manby F.. The embedded many-body expansion for energetics of molecular crystals. J. Chem. Phys. 2012;137:164102. doi: 10.1063/1.4759079. PubMed DOI
Červinka C., Fulem M., Ržička K.. CCSD (T)/CBS fragment-based calculations of lattice energy of molecular crystals. J. Chem. Phys. 2016;144:064505. doi: 10.1063/1.4941055. PubMed DOI
Richard R. M., Lao K. U., Herbert J. M.. Understanding the many-body expansion for large systems. I. Precision considerations. J. Chem. Phys. 2014;141:014108. doi: 10.1063/1.4885846. PubMed DOI
Hermann A., Schwerdtfeger P.. Ground-State Properties of Crystalline Ice from Periodic Hartree-Fock Calculations and a Coupled-Cluster-Based Many-Body Decomposition of the Correlation Energy. Phys. Rev. Lett. 2008;101:183005. doi: 10.1103/PhysRevLett.101.183005. PubMed DOI
Červinka C., Beran G. J. O.. Ab initio prediction of the polymorph phase diagram for crystalline methanol. Chem. Sci. 2018;9:4622–4629. doi: 10.1039/C8SC01237G. PubMed DOI PMC
Loboda O. A., Dolgonos G. A., Boese A. D.. Towards hybrid density functional calculations of molecular crystals via fragment-based methods. J. Chem. Phys. 2018;149:124104. doi: 10.1063/1.5046908. PubMed DOI
Hoja J., List A., Boese A. D.. Multimer Embedding Approach for Molecular Crystals up to Harmonic Vibrational Properties. J. Chem. Theory Comput. 2024;20:357–367. doi: 10.1021/acs.jctc.3c01082. PubMed DOI PMC
Raghavachari K., Trucks G. W., Pople J. A., Head-Gordon M.. A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 1989;157:479–483. doi: 10.1016/S0009-2614(89)87395-6. DOI
Shavitt, I. ; Bartlett, R. J. . Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory. In Cambridge Molecular Science; Cambridge University Press, 2009.
Tschumper G. S.. Multicentered integrated QM:QM methods for weakly bound clusters: An efficient and accurate 2-body: many-body treatment of hydrogen bonding and van der Waals interactions. Chem. Phys. Lett. 2006;427:185–191. doi: 10.1016/j.cplett.2006.06.021. DOI
Beran G. J. O., Nanda K.. Predicting organic crystal lattice energies with chemical accuracy. J. Phys. Chem. Lett. 2010;1:3480–3487. doi: 10.1021/jz101383z. DOI
Sargent C. T., Metcalf D. P., Glick Z. L., Borca C. H., Sherrill C. D.. Benchmarking two-body contributions to crystal lattice energies and a range-dependent assessment of approximate methods. J. Chem. Phys. 2023;158:054112. doi: 10.1063/5.0141872. PubMed DOI
Nelson P. M., Sherrill C. D.. Convergence of the many-body expansion with respect to distance cutoffs in crystals of polar molecules: Acetic acid, formamide, and imidazole. J. Chem. Phys. 2024;161:214105. doi: 10.1063/5.0234883. PubMed DOI
Dobson J. F.. Beyond pairwise additivity in London dispersion interactions. Int. J. Quantum Chem. 2014;114:1157. doi: 10.1002/qua.24635. DOI
Huang Y., Shao Y., Beran G. J.. Accelerating MP2C dispersion corrections for dimers and molecular crystals. J. Chem. Phys. 2013;138:224112. doi: 10.1063/1.4809981. PubMed DOI
Xie Y., Glick Z. L., Sherrill C. D.. Assessment of three-body dispersion models against coupled-cluster benchmarks for crystalline benzene, carbon dioxide, and triazine. J. Chem. Phys. 2023;158:094110. doi: 10.1063/5.0143712. PubMed DOI
Nguyen B. D., Chen G. P., Agee M. M., Burow A. M., Tang M. P., Furche F.. Divergence of many-body perturbation theory for noncovalent interactions of large molecules. J. Chem. Theory Comput. 2020;16:2258–2273. doi: 10.1021/acs.jctc.9b01176. PubMed DOI
Nguyen B. D., Hernandez D. J., Flores E. V., Furche F.. Dispersion size-consistency. Electron. Struct. 2022;4:014003. doi: 10.1088/2516-1075/ac495b. DOI
Liang Y. H., Ye H.-Z., Berkelbach T. C.. Can Spin-Component Scaled MP2 Achieve kJ/mol Accuracy for Cohesive Energies of Molecular Crystals? J. Phys. Chem. Lett. 2023;14:10435–10441. doi: 10.1021/acs.jpclett.3c02411. PubMed DOI
Dobson, J. F. Fundamentals of Time-Dependent Density Functional Theory; Marques, M. A. ; Maitra, N. T. ; Nogueira, F. M. ; Gross, E. ; Rubio, A. , Eds.; Springer: Berlin, Heidelberg, 2012; pp 417–441.
Dobson J. F., Gould T.. Calculation of dispersion energies. J. Phys.: Condens. Matter. 2012;24:073201. doi: 10.1088/0953-8984/24/7/073201. PubMed DOI
Scuseria G. E., Henderson T. M., Sorensen D. C.. The ground state correlation energy of the random phase approximation from a ring coupled cluster doubles approach. J. Chem. Phys. 2008;129:231101. doi: 10.1063/1.3043729. PubMed DOI
Cieśliński D., Tucholska A. M., Modrzejewski M.. Post-Kohn-Sham random-phase approximation and correction terms in the expectation-value coupled-cluster formulation. J. Chem. Theory Comput. 2023;19:6619–6639. doi: 10.1021/acs.jctc.3c00496. PubMed DOI PMC
Modrzejewski M., Yourdkhani S., Śmiga S., Klimes J.. Random-phase approximation in many-body noncovalent systems: Methane in a dodecahedral water cage. J. Chem. Theory Comput. 2021;17:804–817. doi: 10.1021/acs.jctc.0c00966. PubMed DOI
Pham K. N., Modrzejewski M., Klimeš J.. Contributions beyond direct random-phase approximation in the binding energy of solid ethane, ethylene, and acetylene. J. Chem. Phys. 2024;160:224101. doi: 10.1063/5.0207090. PubMed DOI
Nagy P. R., Kállay M.. Approaching the basis set limit of CCSD(T) energies for large molecules with local natural orbital coupled-cluster methods. J. Chem. Theory Comput. 2019;15:5275–5298. doi: 10.1021/acs.jctc.9b00511. PubMed DOI
Nagy P. R.. State-of-the-art local correlation methods enable affordable gold standard quantum chemistry for up to hundreds of atoms. Chem. Sci. 2024;15:14556–14584. doi: 10.1039/D4SC04755A. PubMed DOI PMC
Nagy P. R., Gyevi-Nagy L., Lörincz B. D., Kállay M.. Pursuing the basis set limit of CCSD(T) non-covalent interaction energies for medium-sized complexes: case study on the S66 compilation. Mol. Phys. 2023;121:e2109526. doi: 10.1080/00268976.2022.2109526. DOI
Santra G., Semidalas E., Mehta N., Karton A., Martin J. M.. S66×8 noncovalent interactions revisited: new benchmark and performance of composite localized coupled-cluster methods. Phys. Chem. Chem. Phys. 2022;24:25555–25570. doi: 10.1039/D2CP03938A. PubMed DOI
Chalasinski G., Szczesniak M. M.. Origins of Structure and Energetics of van der Waals Clusters from ab Initio Calculations. Chem. Rev. 1994;94:1723–1765. doi: 10.1021/cr00031a001. DOI
Pal S., Prasad M. D., Mukherjee D.. On certain correspondences among various coupled-cluster theories for closed-shell systems. Pramana. 1982;18:261–270. doi: 10.1007/BF02847816. DOI
Hummel F., Gruneis A., Kresse G., Ziesche P.. Screened exchange corrections to the random phase approximation from many-body perturbation theory. J. Chem. Theory Comput. 2019;15:3223–3236. doi: 10.1021/acs.jctc.8b01247. PubMed DOI
Grüneis A., Marsman M., Harl J., Schimka L., Kresse G.. Making the random phase approximation to electronic correlation accurate. J. Chem. Phys. 2009;131:154115. doi: 10.1063/1.3250347. PubMed DOI
Ren X., Rinke P., Scuseria G. E., Scheffler M.. Renormalized second-order perturbation theory for the electron correlation energy: Concept, implementation, and benchmarks. Phys. Rev. B. 2013;88:035120. doi: 10.1103/PhysRevB.88.035120. DOI
Heßelmann A.. Third-order corrections to random-phase approximation correlation energies. J. Chem. Phys. 2011;134:204107. doi: 10.1063/1.3590916. PubMed DOI
https://github.com/modrzejewski.
Parrish R. M., Zhao Y., Hohenstein E. G., Martínez T. J.. Rank reduced coupled cluster theory. I. Ground state energies and wavefunctions. J. Chem. Phys. 2019;150:164118. doi: 10.1063/1.5092505. PubMed DOI
Yang J., Kurashige Y., Manby F. R., Chan G. K.. Tensor factorizations of local second-order Møller-Plesset theory. J. Chem. Phys. 2011;134:044123. doi: 10.1063/1.3528935. PubMed DOI
Pipek J., Mezey P. G.. A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions. J. Chem. Phys. 1989;90:4916. doi: 10.1063/1.456588. DOI
Foster J. M., Boys S.. Canonical configurational interaction procedure. Rev. Mod. Phys. 1960;32:300. doi: 10.1103/RevModPhys.32.300. DOI
Modrzejewski M., Yourdkhani S., Klimes J.. Random Phase Approximation Applied to Many-Body Noncovalent Systems. J. Chem. Theory Comput. 2020;16:427–442. doi: 10.1021/acs.jctc.9b00979. PubMed DOI
Kállay M., Nagy P. R., Mester D., Rolik Z., Samu G., Csontos J., Csóka J., Szabó P. B., Gyevi-Nagy L., Hégely B., Ladjánszki I., Szegedy L., Ladóczki B., Petrov K., Farkas M., Mezei P. D., Ganyecz. The MRCC program system: Accurate quantum chemistry from water to proteins. J. Chem. Phys. 2020;152:074107. doi: 10.1063/1.5142048. PubMed DOI
Larsen A. H., Mortensen J. J., Blomqvist J., Castelli I. E., Christensen R., Dułak M., Friis J., Groves M. N., Hammer B., Hargus C., Hermes E. D., Jennings P. C., Jensen P. B., Kermode J., Kitchin J. R., Kolsbjerg E. L., Kubal J., Kaasbjerg K., Lysgaard S., Maronsson J. B., Maxson T., Olsen T., Pastewka L., Peterson A., Rostgaard C., Schiøtz J., Schütt O., Strange M., Thygesen K. S., Vegge T., Vilhelmsen L., Walter M., Zeng Z., Jacobsen K. W.. The atomic simulation environmenta Python library for working with atoms. J. Phys.: Condens. Matter. 2017;29:273002. doi: 10.1088/1361-648X/aa680e. PubMed DOI
Borca C. H., Bakr B. W., Burns L. A., Sherrill C. D.. CrystaLattE: Automated computation of lattice energies of organic crystals exploiting the many-body expansion to achieve dual-level parallelism. J. Chem. Phys. 2019;151:144103. doi: 10.1063/1.5120520. PubMed DOI
Parrish R. M., Hohenstein E. G., Martínez T. J., Sherrill C. D.. Tensor hypercontraction. II. Least-squares renormalization. J. Chem. Phys. 2012;137:224106. doi: 10.1063/1.4768233. PubMed DOI
Matthews D. A.. Improved grid optimization and fitting in least squares tensor hypercontraction. J. Chem. Theory Comput. 2020;16:1382–1385. doi: 10.1021/acs.jctc.9b01205. PubMed DOI
Schuchardt K. L., Didier B. T., Elsethagen T., Sun L., Gurumoorthi V., Chase J., Li J., Windus T. L.. Basis Set Exchange: A Community Database for Computational Sciences. J. Chem. Inf. Model. 2007;47:1045–1052. doi: 10.1021/ci600510j. PubMed DOI
Kresse G., Hafner J.. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47:558. doi: 10.1103/PhysRevB.47.558. PubMed DOI
Kresse G., Hafner J.. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B. 1994;49:14251. doi: 10.1103/PhysRevB.49.14251. PubMed DOI
Kresse G., Furthmüller J.. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169. doi: 10.1103/PhysRevB.54.11169. PubMed DOI
Blöchl P. E.. Projector augmented-wave method. Phys. Rev. B. 1994;50:17953. doi: 10.1103/PhysRevB.50.17953. PubMed DOI
Kresse G., Joubert D.. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758. doi: 10.1103/PhysRevB.59.1758. DOI
Rozzi C. A., Varsano D., Marini A., Gross E. K. U., Rubio A.. Exact Coulomb cutoff technique for supercell calculations. Phys. Rev. B. 2006;73:205119. doi: 10.1103/PhysRevB.73.205119. DOI
Hofierka J., Klimes J.. Binding energies of molecular solids from fragment and periodic approaches. Electron. Struct. 2021;3:034010. doi: 10.1088/2516-1075/ac25d6. DOI
Dolgonos G. A., Hoja J., Boese A. D.. Revised values for the X23 benchmark set of molecular crystals. Phys. Chem. Chem. Phys. 2019;21:24333–24344. doi: 10.1039/C9CP04488D. PubMed DOI
Borca C. H., Glick Z. L., Metcalf D. P., Burns L. A., Sherrill C. D.. Benchmark coupled-cluster lattice energy of crystalline benzene and assessment of multi-level approximations in the many-body expansion. J. Chem. Phys. 2023;158:234102. doi: 10.1063/5.0159410. PubMed DOI
Al-Hamdani Y. S., Nagy P. R., Zen A., Barton D., Kállay M., Brandenburg J. G., Tkatchenko A.. Interactions between large molecules pose a puzzle for reference quantum mechanical methods. Nat. Commun. 2021;12:3927. doi: 10.1038/s41467-021-24119-3. PubMed DOI PMC
Fishman V., Lesiuk M., Martin J. M. L., Boese A. D.. Another Angle on Benchmarking Noncovalent Interactions. J. Chem. Theory Comput. 2025;21:2311–2324. doi: 10.1021/acs.jctc.4c01512. PubMed DOI PMC
Klimeš J.. Lattice energies of molecular solids from the random phase approximation with singles corrections. J. Chem. Phys. 2016;145:094506. doi: 10.1063/1.4962188. PubMed DOI
Yourdkhani S., Klimes J.. Using Noncovalent Interactions to Test the Precision of Projector-Augmented Wave Data Sets. J. Chem. Theory Comput. 2023;19:8871–8885. doi: 10.1021/acs.jctc.3c00930. PubMed DOI PMC