Fast and accurate quantum Monte Carlo for molecular crystals
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
29432177
PubMed Central
PMC5828600
DOI
10.1073/pnas.1715434115
PII: 1715434115
Knihovny.cz E-zdroje
- Klíčová slova
- electronic structure, molecular crystal, quantum Monte Carlo,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Computer simulation plays a central role in modern-day materials science. The utility of a given computational approach depends largely on the balance it provides between accuracy and computational cost. Molecular crystals are a class of materials of great technological importance which are challenging for even the most sophisticated ab initio electronic structure theories to accurately describe. This is partly because they are held together by a balance of weak intermolecular forces but also because the primitive cells of molecular crystals are often substantially larger than those of atomic solids. Here, we demonstrate that diffusion quantum Monte Carlo (DMC) delivers subchemical accuracy for a diverse set of molecular crystals at a surprisingly moderate computational cost. As such, we anticipate that DMC can play an important role in understanding and predicting the properties of a large number of molecular crystals, including those built from relatively large molecules which are far beyond reach of other high-accuracy methods.
Department of Earth Sciences University College London London WC1E 6BT United Kingdom
Department of Physics and Astronomy University College London London WC1E 6BT United Kingdom
Department of Physics and Astronomy University College London London WC1E 6BT United Kingdom;
London Centre for Nanotechnology University College London London WC1H 0AH United Kingdom
Physics and Materials Science Research Unit University of Luxembourg L 1511 Luxembourg Luxembourg
Thomas Young Centre University College London London WC1E 6BT United Kingdom
Zobrazit více v PubMed
Burke K. Perspective on density functional theory. J Chem Phys. 2012;136:150901. PubMed
Curtarolo S, et al. The high-throughput highway to computational materials design. Nat Mat. 2013;12:191–201. PubMed
Marzari N. The frontiers and the challenges. Nat Mater. 2016;15:381–382. PubMed
Sun J, et al. Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional. Nat Chem. 2016;8:831–836. PubMed
Cohen AJ, Mori-Sanchez P, Yang W. Insights into current limitations of density functional theory. Science. 2008;321:792–794. PubMed
Peverati R, Truhlar DG. Quest for a universal density functional: The accuracy of density functionals across a broad spectrum of databases in chemistry and physics. Phil Trans R Soc A. 2014;372:20120476. PubMed
Medvedev MG, Bushmarinov IS, Sun J, Perdew JP, Lyssenko KA. Density functional theory is straying from the path toward the exact functional. Science. 2017;355:49–52. PubMed
Hammes-Schiffer S. A conundrum for density functional theory. Science. 2017;355:28–29. PubMed
Grimme S, Hansen A, Brandenburg JG, Bannwarth C. Dispersion-corrected mean-field electronic structure methods. Chem Rev. 2016;116:5105–5154. PubMed
Klimeš J, Michaelides A. Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory. J Chem Phys. 2012;137:120901. PubMed
Beran GJO. Modeling polymorphic molecular crystals with electronic structure theory. Chem Rev. 2016;116:5567–5613. PubMed
Hermann J, DiStasio RA, Jr, Tkatchenko A. First-principles models for van der Waals interactions in molecules and materials: Concepts, theory, and applications. Chem Rev. 2017;117:4714–4758. PubMed
Sun J, Ruzsinszky A, Perdew JP. Strongly constrained and appropriately normed semilocal density functional. Phys Rev Lett. 2015;115:036402. PubMed
Mardirossian N, Head-Gordon M. PubMed
Wang Y, Jin X, Yu HS, Truhlar DG, He X. Revised M06-L functional for improved accuracy on chemical reaction barrier heights, noncovalent interactions, and solid-state physics. Proc Natl Acad Sci USA. 2017;114:8487–8492. PubMed PMC
Cruz-Cabeza AJ, Reutzel-Edens SM, Bernstein J. Facts and fictions about polymorphism. Chem Soc Rev. 2015;44:8619–8635. PubMed
Reilly AM, et al. Report on the sixth blind test of organic crystal structure prediction methods. Acta Cryst B. 2016;72:439–459. PubMed PMC
Booth GH, Grüneis A, Kresse G, Alavi A. Towards an exact description of electronic wavefunctions in real solids. Nature. 2013;493:365–370. PubMed
Wen S, Nanda K, Huang Y, Beran GJO. Practical quantum mechanics-based fragment methods for predicting molecular crystal properties. Phys Chem Chem Phys. 2012;14:7578–7590. PubMed
Bygrave PJ, Allan NL, Manby FR. The embedded many-body expansion for energetics of molecular crystals. J Chem Phys. 2012;137:164102. PubMed
Yang J, et al. Ab initio determination of the crystalline benzene lattice energy to sub-kilojoule/mole accuracy. Science. 2014;345:640–643. PubMed
Werner HJ, Schütz M. An efficient local coupled cluster method for accurate thermochemistry of large systems. J Chem Phys. 2011;135:144116. PubMed
Schimka L, et al. Accurate surface and adsorption energies from many-body perturbation theory. Nat Mater. 2010;9:741–744. PubMed
Ren X, Tkatchenko A, Rinke P, Scheffler M. Beyond the random-phase approximation for the electron correlation energy: The importance of single excitations. Phys Rev Lett. 2011;106:153003. PubMed
Klimeš J. Lattice energies of molecular solids from the random phase approximation with singles corrections. J Chem Phys. 2016;145:094506. PubMed
Foulkes WMC, Mitas L, Needs RJ, Rajagopal G. Quantum Monte Carlo simulations of solids. Rev Mod Phys. 2001;73:33–83.
Dubecký M, Mitas L, Jurečka P. Noncovalent interactions by quantum Monte Carlo. Chem Rev. 2016;116:5188–5215. PubMed
Zen A, Sorella S, Gillan MJ, Michaelides A, Alfè D. Boosting the accuracy and speed of quantum Monte Carlo: Size-consistency and time-step. Phys Rev B. 2016;93:241118(R).
Fraser LM, et al. Finite-size effects and coulomb interactions in quantum Monte Carlo calculations for homogeneous systems with periodic boundary conditions. Phys Rev B. 1996;53:1814–1832. PubMed
Beran GJO, Hartman JD, Heit YN. Predicting molecular crystal properties from first principles: Finite-temperature thermochemistry to NMR crystallography. Acc Chem Res. 2016;49:2501–2508. PubMed
Reilly AM, Tkatchenko A. Understanding the role of vibrations, exact exchange, and many-body van der Waals interactions in the cohesive properties of molecular crystals. J Chem Phys. 2013;139:024705. PubMed
Otero-de-la Roza A, Johnson ER. A benchmark for non-covalent interactions in solids. J Chem Phys. 2012;137:054103. PubMed
Price SL, Reutzel-Edens SM. The potential of computed crystal energy landscapes to aid solid-form development. Drug Discov Today. 2016;21:912–923. PubMed
Pulido A, et al. Functional materials discovery using energy–structure–function maps. Nature. 2017;543:657–664. PubMed PMC
Santra B, et al. Hydrogen bonds and van der Waals forces in ice at ambient and high pressures. Phys Rev Lett. 2011;107:185701. PubMed
Gillan MJ, Alfè D, Bygrave PJ, Taylor CR, Manby FR. Energy benchmarks for water clusters and ice structures from an embedded many-body expansion. J Chem Phys. 2013;139:114101. PubMed
Cutini M, et al. Assessment of different quantum mechanical methods for the prediction of structure and cohesive energy of molecular crystals. J Chem Theor Comput. 2016;12:3340–3352. PubMed
Wen S, Beran GJO. Accurate molecular crystal lattice energies from a fragment QM/MM approach with on-the-fly ab initio force field parametrization. J Chem Theor Comput. 2011;7:3733–3742. PubMed
Podeszwa R, Rice BM, Szalewicz K. Predicting structure of molecular crystals from first principles. Phys Rev Lett. 2008;101:115503. PubMed
Bludský O, Rubeš M, Soldán P. Ab initio investigation of intermolecular interactions in solid benzene. Phys Rev B. 2008;77:092103.
Ringer AL, Sherrill CD. First principles computation of lattice energies of organic solids: The benzene crystal. Chem Eur J. 2008;14:2542–2547. PubMed
Klimeš J, Bowler DR, Michaelides A. Chemical accuracy for the van der Waals density functional. J Phys Cond Mat. 2010;22:022201. PubMed
Needs RJ, Towler MD, Drummond ND, Rios PL. Continuum variational and diffusion quantum Monte Carlo calculations. J Phys: Condens Matter. 2010;22:023201. PubMed
Trail JR, Needs RJ. Norm-conserving Hartree-Fock pseudopotentials and their asymptotic behavior. J Chem Phys. 2005;122:014112. PubMed
Trail JR, Needs RJ. Smooth relativistic Hartree-Fock pseudopotentials for H to Ba and Lu to Hg. J Chem Phys. 2005;122:174109. PubMed
Mitas L, Shirley EL, Ceperley DM. Nonlocal pseudopotentials and diffusion Monte Carlo. J Chem Phys. 1991;95:3467–3475.
Alfè D, Gillan MJ. Efficient localized basis set for quantum Monte Carlo calculations on condensed matter. Phys Rev B. 2004;70:161101.
Trail JR, Needs RJ. Pseudopotentials for correlated electron systems. J Chem Phys. 2013;139:014101. PubMed
Lin C, Zong FH, Ceperley DM. Twist-averaged boundary conditions in continuum quantum Monte Carlo algorithms. Phys Rev E. 2001;64:016702. PubMed
Williamson AJ, et al. Elimination of coulomb finite-size effects in quantum many-body simulations. Phys Rev B. 1997;55:R4851–R4854.
Kent PRC, et al. Finite-size errors in quantum many-body simulations of extended systems. Phys Rev B. 1999;59:1917–1929.
Chiesa S, Ceperley DM, Martin RM, Holzmann M. Finite-size error in many-body simulations with long-range interactions. Phys Rev Lett. 2006;97:076404. PubMed
Kwee H, Zhang S, Krakauer H. Finite-size correction in many-body electronic structure calculations. Phys Rev Lett. 2008;100:126404. PubMed
Umrigar CJ, Nightingale MP, Runge KJ. A diffusion Monte Carlo algorithm with very small time-step errors. J Chem Phys. 1993;99:2865–2890.