Introducing the Coupled-Cluster Theory to the Amorphous World of Liquids and Their Thermodynamic Simulations

. 2025 Oct 14 ; 21 (19) : 9868-9878. [epub] 20250917

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40963220

Amorphous molecular materials are ubiquitous, spanning drugs, semiconductors, or solvents. Large predictive capabilities of quantum-chemical simulations of structural and thermodynamic properties and phase transitions for such amorphous materials have remained out of reach for a long time due to the related immense computational costs. This work introduces a novel fragment-based ab initio Monte Carlo (FrAMonC) simulation technique to the amorphous realm of molecular liquids and glasses. It aims at enabling thermodynamic simulations for amorphous molecular materials based on direct ab initio sampling and at minimizing the amount of a priori required empirical inputs for such simulations. Focus on individual cohesive interactions within the bulk, and their sampling from multiple first-principles potentials with a many-body expansion scheme enables the use of very accurate electron-structure methods for the most important cohesive features within the material. Even the coupled-cluster theory, the direct use of which is unprecedented for molecular simulations of thermodynamic properties for liquids, then becomes applicable to the description of bulk amorphous materials. Its incorporation in the proposed Monte Carlo simulations promises very high computational accuracy. Bulk-phase equilibrium properties at finite temperatures and pressures, such as density and vaporization enthalpy, as well as response properties such as thermal expansivity and heat capacity that are particularly challenging to predict accurately, are the observables targeted in this work. Superior computational accuracy of the introduced FrAMonC simulations is demonstrated for most target properties (liquid-phase densities, thermal expansivities, and gas-liquid differences in the heat capacities) when compared with established classical or quantum-chemical models that are commonly used to model such properties of bulk liquids.

Zobrazit více v PubMed

Ueda K., Moseson D. E., Taylor L. S.. Amorphous solubility advantage: Theoretical considerations, experimental methods, and contemporary relevance. J. Pharm. Sci. 2025;114(1):18–39. doi: 10.1016/j.xphs.2024.08.029. PubMed DOI

Virkar A. A., Mannsfeld S., Bao Z., Stingelin N.. Organic Semiconductor Growth and Morphology Considerations for Organic Thin-Film Transistors. Adv. Mater. 2010;22(34):3857–3875. doi: 10.1002/adma.200903193. PubMed DOI

Červinka C., Beran G. J. O.. Ab initio prediction of the polymorph phase diagram for crystalline methanol. Chem. Sci. 2018;9(20):4622–4629. doi: 10.1039/C8SC01237G. PubMed DOI PMC

Caldeweyher E., Ehlert S., Hansen A., Neugebauer H., Spicher S., Bannwarth C., Grimme S.. A generally applicable atomic-charge dependent London dispersion correction. J. Chem. Phys. 2019;150(15):154122. doi: 10.1063/1.5090222. PubMed DOI

Dolgonos G. A., Hoja J., Boese A. D.. Revised values for the X23 benchmark set of molecular crystals. Phys. Chem. Chem. Phys. 2019;21(44):24333–24344. doi: 10.1039/C9CP04488D. PubMed DOI

Červinka C., Fulem M.. State-of-the-Art Calculations of Sublimation Enthalpies for Selected Molecular Crystals and Their Computational Uncertainty. J. Chem. Theory Comput. 2017;13(6):2840–2850. doi: 10.1021/acs.jctc.7b00164. PubMed DOI

Červinka C., Fulem M., Stoffel R. P., Dronskowski R.. Thermodynamic properties of molecular crystals calculated within the quasi-harmonic approximation. J. Phys. Chem. A. 2016;120:2022–2034. doi: 10.1021/acs.jpca.6b00401. PubMed DOI

Ludík J., Kostková V., Kocian Š., Touš P., Štejfa V., Červinka C.. First-Principles Models of Polymorphism of Pharmaceuticals: Maximizing the Accuracy-to-Cost Ratio. J. Chem. Theory Comput. 2024;20(7):2858–2870. doi: 10.1021/acs.jctc.4c00099. PubMed DOI PMC

Červinka C., Klajmon M., Štejfa V.. Cohesive Properties of Ionic Liquids Calculated from First Principles. J. Chem. Theory Comput. 2019;15(10):5563–5578. doi: 10.1021/acs.jctc.9b00625. PubMed DOI

Pokorný V., Touš P., Štejfa V., Růžička K., Rohlíček J., Czernek J., Brus J., Červinka C.. Anisotropy, segmental dynamics and polymorphism of crystalline biogenic carboxylic acids. Phys. Chem. Chem. Phys. 2022;24(42):25904–25917. doi: 10.1039/D2CP03698C. PubMed DOI

McKinley J. L., Beran G. J. O.. Identifying pragmatic quasi-harmonic electronic structure approaches for modeling molecular crystal thermal expansion. Faraday Discuss. 2018;211(0):181–207. doi: 10.1039/C8FD00048D. PubMed DOI

Cook C., McKinley J. L., Beran G. J. O.. Modeling the α- and β-resorcinol phase boundary via combination of density functional theory and density functional tight-binding. J. Chem. Phys. 2021;154(13):134109. doi: 10.1063/5.0044385. PubMed DOI PMC

Beran G. J. O., Sugden I. J., Greenwell C., Bowskill D. H., Pantelides C. C., Adjiman C. S.. How many more polymorphs of ROY remain undiscovered. Chem. Sci. 2022;13(5):1288–1297. doi: 10.1039/D1SC06074K. PubMed DOI PMC

Hunnisett L. M., Francia N., Nyman J., Abraham N. S., Aitipamula S., Alkhidir T., Almehairbi M., Anelli A., Anstine D. M., Anthony J. E.. et al. The seventh blind test of crystal structure prediction: structure ranking methods. Acta Crystallogr., Sect. B:Struct. Sci., Cryst. Eng. Mater. 2024;80(6):548–574. doi: 10.1107/S2052520624008679. PubMed DOI PMC

Červinka C., Beran G. J. O.. Towards reliable ab initio sublimation pressures for organic molecular crystals – are we there yet. Phys. Chem. Chem. Phys. 2019;21(27):14799–14810. doi: 10.1039/C9CP01572H. PubMed DOI

Červinka C., Fulem M.. Probing the Accuracy of First-Principles Modeling of Molecular Crystals: Calculation of Sublimation Pressures. Cryst. Growth Des. 2019;19(2):808–820. doi: 10.1021/acs.cgd.8b01374. DOI

Bryenton K. R., Adeleke A. A., Dale S. G., Johnson E. R.. Delocalization error: The greatest outstanding challenge in density-functional theory. WIREs Comput. Mol. Sci. 2023;13(2):e1631. doi: 10.1002/wcms.1631. DOI

DiLabio, G. A. ; Otero-de-la-Roza, A. . Noncovalent Interactions in Density Functional Theory. In Reviews in Computational Chemistry; Wiley, 2016; Vol. 29, pp 1–97 10.1002/9781119148739.ch1. DOI

Gillan M. J., Alfè D., Bartók A. P., Csányi G.. First-principles energetics of water clusters and ice: A many-body analysis. J. Chem. Phys. 2013;139(24):244504. doi: 10.1063/1.4852182. PubMed DOI

Hoja J., List A., Boese A. D.. Multimer Embedding Approach for Molecular Crystals up to Harmonic Vibrational Properties. J. Chem. Theory Comput. 2024;20(1):357–367. doi: 10.1021/acs.jctc.3c01082. PubMed DOI PMC

Rana B., Beran G. J. O., Herbert J. M.. Correcting π-delocalisation errors in conformational energies using density-corrected DFT, with application to crystal polymorphs. Mol. Phys. 2023;121(7–8):e2138789. doi: 10.1080/00268976.2022.2138789. DOI

Červinka C.. Interplay of aprotic ionic liquids with hydrogen bonded networks in associating aliphatic alcohols. J. Mol. Liq. 2025;417:126600. doi: 10.1016/j.molliq.2024.126600. DOI

Maschio L.. Local MP2 with Density Fitting for Periodic Systems: A Parallel Implementation. J. Chem. Theory Comput. 2011;7(9):2818–2830. doi: 10.1021/ct200352g. PubMed DOI

Beran G. J. O.. Modeling Polymorphic Molecular Crystals with Electronic Structure Theory. Chem. Rev. 2016;116(9):5567–5613. doi: 10.1021/acs.chemrev.5b00648. PubMed DOI

Herbert J. M.. Fantasy versus reality in fragment-based quantum chemistry. J. Chem. Phys. 2019;151(17):170901. doi: 10.1063/1.5126216. PubMed DOI

Červinka C., Fulem M., Růžička K.. CCSD­(T)/CBS fragment-based calculations of lattice energy of molecular crystals. J. Chem. Phys. 2016;144(6):064505. doi: 10.1063/1.4941055. PubMed DOI

Syty K., Czekało G., Pham K. N., Modrzejewski M.. Multi-Level Coupled-Cluster Description of Crystal Lattice Energies. J. Chem. Theory Comput. 2025;21(11):5533–5544. doi: 10.1021/acs.jctc.5c00428. PubMed DOI PMC

Greenwell C., McKinley J. L., Zhang P., Zeng Q., Sun G., Li B., Wen S., Beran G. J. O.. Overcoming the difficulties of predicting conformational polymorph energetics in molecular crystals via correlated wavefunction methods. Chem. Sci. 2020;11(8):2200–2214. doi: 10.1039/C9SC05689K. PubMed DOI PMC

Yang J., Hu W., Usvyat D., Matthews D., Schütz M., Chan G. K.-L.. Ab initio determination of the crystalline benzene lattice energy to sub-kilojoule/mol accuracy. Science. 2014;345(6197):640–643. doi: 10.1126/science.1254419. PubMed DOI

Kirchner B., Hollóczki O., Lopes J. N. C., Pádua A. A. H.. Multiresolution calculation of ionic liquids. WIREs Comput. Mol. Sci. 2015;5(2):202–214. doi: 10.1002/wcms.1212. DOI

Beran G. J. O., Wright S. E., Greenwell C., Cruz-Cabeza A. J.. The interplay of intra- and intermolecular errors in modeling conformational polymorphs. J. Chem. Phys. 2022;156(10):104112. doi: 10.1063/5.0088027. PubMed DOI

Bore S. L., Paesani F.. Realistic phase diagram of water from “first principles” data-driven quantum simulations. Nat. Commun. 2023;14(1):3349. doi: 10.1038/s41467-023-38855-1. PubMed DOI PMC

Gillan M. J., Alfè D., Michaelides A.. Perspective: How good is DFT for water? J. Chem. Phys. 2016;144(13):130901. doi: 10.1063/1.4944633. PubMed DOI

Del Ben M., Schütt O., Wentz T., Messmer P., Hutter J., VandeVondele J.. Enabling simulation at the fifth rung of DFT: Large scale RPA calculations with excellent time to solution. Comput. Phys. Commun. 2015;187:120–129. doi: 10.1016/j.cpc.2014.10.021. DOI

Willow S. Y., Zeng X. C., Xantheas S. S., Kim K. S., Hirata S.. Why Is MP2-Water “Cooler” and “Denser” than DFT-Water. J. Phys. Chem. Lett. 2016;7(4):680–684. doi: 10.1021/acs.jpclett.5b02430. PubMed DOI

Wagner W., Pruß A.. The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. J. Phys. Chem. Ref. Data. 2002;31(2):387–535. doi: 10.1063/1.1461829. DOI

van der Spoel D., van Maaren P. J., Berendsen H. J. C.. A systematic study of water models for molecular simulation: Derivation of water models optimized for use with a reaction field. J. Chem. Phys. 1998;108(24):10220–10230. doi: 10.1063/1.476482. DOI

Abascal J. L. F., Vega C.. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 2005;123(23):234505. doi: 10.1063/1.2121687. PubMed DOI

Del Ben M., Hutter J., VandeVondele J.. Probing the structural and dynamical properties of liquid water with models including non-local electron correlation. J. Chem. Phys. 2015;143(5):054506. doi: 10.1063/1.4927325. PubMed DOI

Rybkin V. V.. Sampling Potential Energy Surfaces in the Condensed Phase with Many-Body Electronic Structure Methods. Chem. - Eur. J. 2020;26(2):362–368. doi: 10.1002/chem.201904012. PubMed DOI

Cheng B., Engel E. A., Behler J., Dellago C., Ceriotti M.. Ab initio thermodynamics of liquid and solid water. Proc. Natl. Acad. Sci. U.S.A. 2019;116(4):1110–1115. doi: 10.1073/pnas.1815117116. PubMed DOI PMC

Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W., Klein M. L.. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79(2):926–935. doi: 10.1063/1.445869. DOI

Jorgensen W. L., Maxwell D. S., Tirado-Rives J.. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996;118(45):11225–11236. doi: 10.1021/ja9621760. DOI

Medders G. R., Babin V., Paesani F.. Development of a “First-Principles” Water Potential with Flexible Monomers. III. Liquid Phase Properties. J. Chem. Theory Comput. 2014;10(8):2906–2910. doi: 10.1021/ct5004115. PubMed DOI

Unke O. T., Chmiela S., Sauceda H. E., Gastegger M., Poltavsky I., Schütt K. T., Tkatchenko A., Müller K.-R.. Machine Learning Force Fields. Chem. Rev. 2021;121(16):10142–10186. doi: 10.1021/acs.chemrev.0c01111. PubMed DOI PMC

de Hijes P. M., Dellago C., Jinnouchi R., Schmiedmayer B., Kresse G.. Comparing machine learning potentials for water: Kernel-based regression and Behler–Parrinello neural networks. J. Chem. Phys. 2024;160(11):114107. doi: 10.1063/5.0197105. PubMed DOI

Zhang C., Tang F., Chen M., Xu J., Zhang L., Qiu D. Y., Perdew J. P., Klein M. L., Wu X.. Modeling Liquid Water by Climbing up Jacob’s Ladder in Density Functional Theory Facilitated by Using Deep Neural Network Potentials. J. Phys. Chem. B. 2021;125(41):11444–11456. doi: 10.1021/acs.jpcb.1c03884. PubMed DOI

Gupta S., Bull-Vulpe E. F., Agnew H., Iyer S., Zhu X., Zhou R., Knight C., Paesani F.. MBX V1.2: Accelerating Data-Driven Many-Body Molecular Dynamics Simulations. J. Chem. Theory Comput. 2025;21(4):1838–1849. doi: 10.1021/acs.jctc.4c01333. PubMed DOI

Zhang Y., Maginn E. J.. A comparison of methods for melting point calculation using molecular dynamics simulations. J. Chem. Phys. 2012;136(14):144116. doi: 10.1063/1.3702587. PubMed DOI

Dorner F., Sukurma Z., Dellago C., Kresse G.. Melting Si: Beyond Density Functional Theory. Phys. Rev. Lett. 2018;121(19):195701. doi: 10.1103/PhysRevLett.121.195701. PubMed DOI

Muniz M. C., Gartner T. E. III, Riera M., Knight C., Yue S., Paesani F., Panagiotopoulos A. Z.. Vapor–liquid equilibrium of water with the MB-pol many-body potential. J. Chem. Phys. 2021;154(21):211103. doi: 10.1063/5.0050068. PubMed DOI

Gardini A. T., Raucci U., Parrinello M.. Machine learning-driven molecular dynamics unveils a bulk phase transformation driving ammonia synthesis on barium hydride. Nat. Commun. 2025;16(1):2475. doi: 10.1038/s41467-025-57688-8. PubMed DOI PMC

Wang T., He X., Li M., Li Y., Bi R., Wang Y., Cheng C., Shen X., Meng J., Zhang H.. et al. Ab initio characterization of protein molecular dynamics with AI2BMD. Nature. 2024;635(8040):1019–1027. doi: 10.1038/s41586-024-08127-z. PubMed DOI PMC

Nickerson C. J., Johnson E. R.. Assessment of a foundational machine-learned potential for energy ranking of molecular crystal polymorphs. Phys. Chem. Chem. Phys. 2025;27(22):11930–11940. doi: 10.1039/D5CP00593K. PubMed DOI

Řezáč J., Hobza P.. Describing Noncovalent Interactions beyond the Common Approximations: How Accurate Is the “Gold Standard,” CCSD­(T) at the Complete Basis Set Limit. J. Chem. Theory Comput. 2013;9(5):2151–2155. doi: 10.1021/ct400057w. PubMed DOI

McGrath M. J., Siepmann J. I., Kuo I. F. W., Mundy C. J., VandeVondele J., Hutter J., Mohamed F., Krack M.. Isobaric–Isothermal Monte Carlo Simulations from First Principles: Application to Liquid Water at Ambient Conditions. ChemPhysChem. 2005;6(9):1894–1901. doi: 10.1002/cphc.200400580. PubMed DOI

Fetisov E. O., Shah M. S., Long J. R., Tsapatsis M., Siepmann J. I.. First principles Monte Carlo simulations of unary and binary adsorption: CO2, N2, and H2O in Mg-MOF-74. Chem. Commun. 2018;54(77):10816–10819. doi: 10.1039/C8CC06178E. PubMed DOI

Li Z., Winisdoerffer C., Soubiran F., Caracas R.. Ab initio Gibbs ensemble Monte Carlo simulations of the liquid–vapor equilibrium and the critical point of sodium. Phys. Chem. Chem. Phys. 2021;23(1):311–319. doi: 10.1039/D0CP04158K. PubMed DOI

McGrath M. J., Kuo I. F. W., Ghogomu J. N., Mundy C. J., Siepmann J. I.. Vapor–Liquid Coexistence Curves for Methanol and Methane Using Dispersion-Corrected Density Functional Theory. J. Phys. Chem. B. 2011;115(40):11688–11692. doi: 10.1021/jp205072v. PubMed DOI

Jadrich R. B., Leiding J. A.. Accelerating Ab Initio Simulation via Nested Monte Carlo and Machine Learned Reference Potentials. J. Phys. Chem. B. 2020;124(26):5488–5497. doi: 10.1021/acs.jpcb.0c03738. PubMed DOI

Leiding J., Coe J. D.. An efficient approach to ab initio Monte Carlo simulation. J. Chem. Phys. 2014;140(3):034106. doi: 10.1063/1.4855755. PubMed DOI

Shah J. K., Maginn E. J.. A general and efficient Monte Carlo method for sampling intramolecular degrees of freedom of branched and cyclic molecules. J. Chem. Phys. 2011;135(13):134121. doi: 10.1063/1.3644939. PubMed DOI

Piazza L., Span R.. An equation of state for methanol including the association term of SAFT. Fluid Phase Equilib. 2013;349:12–24. doi: 10.1016/j.fluid.2013.03.024. DOI

Ihmels E. C., Lemmon E. W.. Experimental densities, vapor pressures, and critical point, and a fundamental equation of state for dimethyl ether. Fluid Phase Equilib. 2007;260(1):36–48. doi: 10.1016/j.fluid.2006.09.016. DOI

Červinka, C. FrAMonC github repository 2025. https://github.com/CervinkaGroup/FrAMonC.

Shah J. K., Marin-Rimoldi E., Marin-Rimoldi E., Mullen R. G., Keene B. P., Khan S., Paluch A. S., Rai N., Romanielo L. L., Rosch T. W., Yoo B.. Cassandra: An open source Monte Carlo package for molecular simulation. J. Comput. Chem. 2017;38(19):1727–1739. doi: 10.1002/jcc.24807. PubMed DOI

Gaus M., Cui Q., Elstner M.. DFTB3: Extension of the Self-Consistent-Charge Density-Functional Tight-Binding Method (SCC-DFTB) J. Chem. Theory Comput. 2011;7(4):931–948. doi: 10.1021/ct100684s. PubMed DOI PMC

Hourahine B., Aradi B., Blum V., Bonafé F., Buccheri A., Camacho C., Cevallos C., Deshaye M. Y., Dumitrică T., Dominguez A.. et al. DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. J. Chem. Phys. 2020;152(12):124101. doi: 10.1063/1.5143190. PubMed DOI

Gaus M., Goez A., Elstner M.. Parametrization and Benchmark of DFTB3 for Organic Molecules. J. Chem. Theory Comput. 2013;9(1):338–354. doi: 10.1021/ct300849w. PubMed DOI

Kubillus M., Kubař T., Gaus M., Řezáč J., Elstner M.. Parameterization of the DFTB3Method for Br, Ca, Cl, F, I, K, and Na in Organic and Biological Systems. J. Chem. Theory Comput. 2015;11(1):332–342. doi: 10.1021/ct5009137. PubMed DOI

Perdew J. P., Burke K., Ernzerhof M.. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77(18):3865. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Kresse G., Furthmüller J.. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54(16):11169. doi: 10.1103/PhysRevB.54.11169. PubMed DOI

Kresse G., Furthmüller J.. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996;6(1):15–50. doi: 10.1016/0927-0256(96)00008-0. DOI

Blöchl P. E.. Projector augmented-wave method. Phys. Rev. B. 1994;50(24):17953. doi: 10.1103/PhysRevB.50.17953. PubMed DOI

Kresse G., Joubert D.. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59(3):1758. doi: 10.1103/PhysRevB.59.1758. DOI

Grimme S., Ehrlich S., Goerigk L.. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011;32(7):1456–1465. doi: 10.1002/jcc.21759. PubMed DOI

Werner H.-J., Manby F. R.. Explicitly correlated second-order perturbation theory using density fitting and local approximations. J. Chem. Phys. 2006;124(5):054114. doi: 10.1063/1.2150817. PubMed DOI

Stoychev G. L., Auer A. A., Neese F.. Automatic Generation of Auxiliary Basis Sets. J. Chem. Theory Comput. 2017;13(2):554–562. doi: 10.1021/acs.jctc.6b01041. PubMed DOI

Riplinger C., Neese F.. An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys. 2013;138(3):034106. doi: 10.1063/1.4773581. PubMed DOI

Neese F., Hansen A., Liakos D. G.. Efficient and accurate approximations to the local coupled cluster singles doubles method using a truncated pair natural orbital basis. J. Chem. Phys. 2009;131(6):064103. doi: 10.1063/1.3173827. PubMed DOI

Riplinger C., Sandhoefer B., Hansen A., Neese F.. Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J. Chem. Phys. 2013;139(13):134101. doi: 10.1063/1.4821834. PubMed DOI

Helgaker T., Klopper W., Koch H., Noga J.. Basis-set convergence of correlated calculations on water. J. Chem. Phys. 1997;106(23):9639–9646. doi: 10.1063/1.473863. DOI

Zhong S., Barnes E. C., Petersson G. A.. Uniformly convergent n-tuple-ζ augmented polarized (nZaP) basis sets for complete basis set extrapolations. I. Self-consistent field energies. J. Chem. Phys. 2008;129(18):184116. doi: 10.1063/1.3009651. PubMed DOI

Neese F., Valeev E. F.. Revisiting the Atomic Natural Orbital Approach for Basis Sets: Robust Systematic Basis Sets for Explicitly Correlated and Conventional Correlated ab initio Methods. J. Chem. Theory Comput. 2011;7(1):33–43. doi: 10.1021/ct100396y. PubMed DOI

Neese F., Wennmohs F., Becker U., Riplinger C.. The ORCA quantum chemistry program package. J. Chem. Phys. 2020;152(22):224108. doi: 10.1063/5.0004608. PubMed DOI

Neese F.. Software update: The ORCA program systemVersion 5.0. WIREs Comput. Mol. Sci. 2022;12(5):e1606. doi: 10.1002/wcms.1606. DOI

Neese F.. The SHARK integral generation and digestion system. J. Comput. Chem. 2023;44(3):381–396. doi: 10.1002/jcc.26942. PubMed DOI

Oliveira D. V., Laun J., Peintinger M. F., Bredow T.. BSSE-correction scheme for consistent gaussian basis sets of double- and triple-zeta valence with polarization quality for solid-state calculations. J. Comput. Chem. 2019;40(27):2364–2376. doi: 10.1002/jcc.26013. PubMed DOI

Erba A., Desmarais J. K., Casassa S., Civalleri B., Donà L., Bush I. J., Searle B., Maschio L., Edith-Daga L., Cossard A.. et al. CRYSTAL23: A Program for Computational Solid State Physics and Chemistry. J. Chem. Theory Comput. 2023;19(20):6891–6932. doi: 10.1021/acs.jctc.2c00958. PubMed DOI PMC

Wu J., Magee J. W.. Heat Capacity of Saturated and Compressed Liquid Dimethyl Ether at Temperatures from (132 to 345) K and at Pressures to 35 MPa. J. Chem. Eng. Data. 2018;63(5):1713–1723. doi: 10.1021/acs.jced.8b00037. DOI

Skinner L. B., Benmore C. J., Neuefeind J. C., Parise J. B.. The structure of water around the compressibility minimum. J. Chem. Phys. 2014;141(21):214507. doi: 10.1063/1.4902412. PubMed DOI

Frenkel M., Chirico R. D., Diky V., Yan X., Dong Q., Muzny C.. ThermoData Engine (TDE): Software Implementation of the Dynamic Data Evaluation Concept. J. Chem. Inf. Model. 2005;45(4):816–838. doi: 10.1021/ci050067b. PubMed DOI

Dias R. F., da Costa C. C., Manhabosco T. M., de Oliveira A. B., Matos M. J. S., Soares J. S., Batista R. J. C.. Ab initio molecular dynamics simulation of methanol and acetonitrile: The effect of van der Waals interactions. Chem. Phys. Lett. 2019;714:172–177. doi: 10.1016/j.cplett.2018.10.085. DOI

Morrone J. A., Tuckerman M. E.. Ab initio molecular dynamics study of proton mobility in liquid methanol. J. Chem. Phys. 2002;117(9):4403–4413. doi: 10.1063/1.1496457. DOI

Sieffert N., Bühl M., Gaigeot M. P., Morrison C. A.. Liquid Methanol from DFT and DFT/MM Molecular Dynamics Simulations. J. Chem. Theory Comput. 2013;9(1):106–118. doi: 10.1021/ct300784x. PubMed DOI

Handgraaf J. W., Meijer E. J., Gaigeot M. P.. Density-functional theory-based molecular simulation study of liquid methanol. J. Chem. Phys. 2004;121(20):10111–10119. doi: 10.1063/1.1809595. PubMed DOI

Růžička K., Fulem M., Červinka C.. Recommended sublimation pressure and enthalpy of benzene. J. Chem. Thermodyn. 2014;68:40–47. doi: 10.1016/j.jct.2013.08.022. DOI

Craven R. J. B., de Reuck K. M.. Development of a vapour pressure equation for methanol. Fluid Phase Equilib. 1993;89(1):19–29. doi: 10.1016/0378-3812(93)85043-L. DOI

Wang X., Yang H., Wang M., Huai Z., Sun Z.. Virtual screening of cucurbituril host-guest complexes: Large-scale benchmark of end-point protocols under MM and QM Hamiltonians. J. Mol. Liq. 2024;407:125245. doi: 10.1016/j.molliq.2024.125245. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...