Introducing the Coupled-Cluster Theory to the Amorphous World of Liquids and Their Thermodynamic Simulations
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40963220
PubMed Central
PMC12529918
DOI
10.1021/acs.jctc.5c01214
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Amorphous molecular materials are ubiquitous, spanning drugs, semiconductors, or solvents. Large predictive capabilities of quantum-chemical simulations of structural and thermodynamic properties and phase transitions for such amorphous materials have remained out of reach for a long time due to the related immense computational costs. This work introduces a novel fragment-based ab initio Monte Carlo (FrAMonC) simulation technique to the amorphous realm of molecular liquids and glasses. It aims at enabling thermodynamic simulations for amorphous molecular materials based on direct ab initio sampling and at minimizing the amount of a priori required empirical inputs for such simulations. Focus on individual cohesive interactions within the bulk, and their sampling from multiple first-principles potentials with a many-body expansion scheme enables the use of very accurate electron-structure methods for the most important cohesive features within the material. Even the coupled-cluster theory, the direct use of which is unprecedented for molecular simulations of thermodynamic properties for liquids, then becomes applicable to the description of bulk amorphous materials. Its incorporation in the proposed Monte Carlo simulations promises very high computational accuracy. Bulk-phase equilibrium properties at finite temperatures and pressures, such as density and vaporization enthalpy, as well as response properties such as thermal expansivity and heat capacity that are particularly challenging to predict accurately, are the observables targeted in this work. Superior computational accuracy of the introduced FrAMonC simulations is demonstrated for most target properties (liquid-phase densities, thermal expansivities, and gas-liquid differences in the heat capacities) when compared with established classical or quantum-chemical models that are commonly used to model such properties of bulk liquids.
Zobrazit více v PubMed
Ueda K., Moseson D. E., Taylor L. S.. Amorphous solubility advantage: Theoretical considerations, experimental methods, and contemporary relevance. J. Pharm. Sci. 2025;114(1):18–39. doi: 10.1016/j.xphs.2024.08.029. PubMed DOI
Virkar A. A., Mannsfeld S., Bao Z., Stingelin N.. Organic Semiconductor Growth and Morphology Considerations for Organic Thin-Film Transistors. Adv. Mater. 2010;22(34):3857–3875. doi: 10.1002/adma.200903193. PubMed DOI
Červinka C., Beran G. J. O.. Ab initio prediction of the polymorph phase diagram for crystalline methanol. Chem. Sci. 2018;9(20):4622–4629. doi: 10.1039/C8SC01237G. PubMed DOI PMC
Caldeweyher E., Ehlert S., Hansen A., Neugebauer H., Spicher S., Bannwarth C., Grimme S.. A generally applicable atomic-charge dependent London dispersion correction. J. Chem. Phys. 2019;150(15):154122. doi: 10.1063/1.5090222. PubMed DOI
Dolgonos G. A., Hoja J., Boese A. D.. Revised values for the X23 benchmark set of molecular crystals. Phys. Chem. Chem. Phys. 2019;21(44):24333–24344. doi: 10.1039/C9CP04488D. PubMed DOI
Červinka C., Fulem M.. State-of-the-Art Calculations of Sublimation Enthalpies for Selected Molecular Crystals and Their Computational Uncertainty. J. Chem. Theory Comput. 2017;13(6):2840–2850. doi: 10.1021/acs.jctc.7b00164. PubMed DOI
Červinka C., Fulem M., Stoffel R. P., Dronskowski R.. Thermodynamic properties of molecular crystals calculated within the quasi-harmonic approximation. J. Phys. Chem. A. 2016;120:2022–2034. doi: 10.1021/acs.jpca.6b00401. PubMed DOI
Ludík J., Kostková V., Kocian Š., Touš P., Štejfa V., Červinka C.. First-Principles Models of Polymorphism of Pharmaceuticals: Maximizing the Accuracy-to-Cost Ratio. J. Chem. Theory Comput. 2024;20(7):2858–2870. doi: 10.1021/acs.jctc.4c00099. PubMed DOI PMC
Červinka C., Klajmon M., Štejfa V.. Cohesive Properties of Ionic Liquids Calculated from First Principles. J. Chem. Theory Comput. 2019;15(10):5563–5578. doi: 10.1021/acs.jctc.9b00625. PubMed DOI
Pokorný V., Touš P., Štejfa V., Růžička K., Rohlíček J., Czernek J., Brus J., Červinka C.. Anisotropy, segmental dynamics and polymorphism of crystalline biogenic carboxylic acids. Phys. Chem. Chem. Phys. 2022;24(42):25904–25917. doi: 10.1039/D2CP03698C. PubMed DOI
McKinley J. L., Beran G. J. O.. Identifying pragmatic quasi-harmonic electronic structure approaches for modeling molecular crystal thermal expansion. Faraday Discuss. 2018;211(0):181–207. doi: 10.1039/C8FD00048D. PubMed DOI
Cook C., McKinley J. L., Beran G. J. O.. Modeling the α- and β-resorcinol phase boundary via combination of density functional theory and density functional tight-binding. J. Chem. Phys. 2021;154(13):134109. doi: 10.1063/5.0044385. PubMed DOI PMC
Beran G. J. O., Sugden I. J., Greenwell C., Bowskill D. H., Pantelides C. C., Adjiman C. S.. How many more polymorphs of ROY remain undiscovered. Chem. Sci. 2022;13(5):1288–1297. doi: 10.1039/D1SC06074K. PubMed DOI PMC
Hunnisett L. M., Francia N., Nyman J., Abraham N. S., Aitipamula S., Alkhidir T., Almehairbi M., Anelli A., Anstine D. M., Anthony J. E.. et al. The seventh blind test of crystal structure prediction: structure ranking methods. Acta Crystallogr., Sect. B:Struct. Sci., Cryst. Eng. Mater. 2024;80(6):548–574. doi: 10.1107/S2052520624008679. PubMed DOI PMC
Červinka C., Beran G. J. O.. Towards reliable ab initio sublimation pressures for organic molecular crystals – are we there yet. Phys. Chem. Chem. Phys. 2019;21(27):14799–14810. doi: 10.1039/C9CP01572H. PubMed DOI
Červinka C., Fulem M.. Probing the Accuracy of First-Principles Modeling of Molecular Crystals: Calculation of Sublimation Pressures. Cryst. Growth Des. 2019;19(2):808–820. doi: 10.1021/acs.cgd.8b01374. DOI
Bryenton K. R., Adeleke A. A., Dale S. G., Johnson E. R.. Delocalization error: The greatest outstanding challenge in density-functional theory. WIREs Comput. Mol. Sci. 2023;13(2):e1631. doi: 10.1002/wcms.1631. DOI
DiLabio, G. A. ; Otero-de-la-Roza, A. . Noncovalent Interactions in Density Functional Theory. In Reviews in Computational Chemistry; Wiley, 2016; Vol. 29, pp 1–97 10.1002/9781119148739.ch1. DOI
Gillan M. J., Alfè D., Bartók A. P., Csányi G.. First-principles energetics of water clusters and ice: A many-body analysis. J. Chem. Phys. 2013;139(24):244504. doi: 10.1063/1.4852182. PubMed DOI
Hoja J., List A., Boese A. D.. Multimer Embedding Approach for Molecular Crystals up to Harmonic Vibrational Properties. J. Chem. Theory Comput. 2024;20(1):357–367. doi: 10.1021/acs.jctc.3c01082. PubMed DOI PMC
Rana B., Beran G. J. O., Herbert J. M.. Correcting π-delocalisation errors in conformational energies using density-corrected DFT, with application to crystal polymorphs. Mol. Phys. 2023;121(7–8):e2138789. doi: 10.1080/00268976.2022.2138789. DOI
Červinka C.. Interplay of aprotic ionic liquids with hydrogen bonded networks in associating aliphatic alcohols. J. Mol. Liq. 2025;417:126600. doi: 10.1016/j.molliq.2024.126600. DOI
Maschio L.. Local MP2 with Density Fitting for Periodic Systems: A Parallel Implementation. J. Chem. Theory Comput. 2011;7(9):2818–2830. doi: 10.1021/ct200352g. PubMed DOI
Beran G. J. O.. Modeling Polymorphic Molecular Crystals with Electronic Structure Theory. Chem. Rev. 2016;116(9):5567–5613. doi: 10.1021/acs.chemrev.5b00648. PubMed DOI
Herbert J. M.. Fantasy versus reality in fragment-based quantum chemistry. J. Chem. Phys. 2019;151(17):170901. doi: 10.1063/1.5126216. PubMed DOI
Červinka C., Fulem M., Růžička K.. CCSD(T)/CBS fragment-based calculations of lattice energy of molecular crystals. J. Chem. Phys. 2016;144(6):064505. doi: 10.1063/1.4941055. PubMed DOI
Syty K., Czekało G., Pham K. N., Modrzejewski M.. Multi-Level Coupled-Cluster Description of Crystal Lattice Energies. J. Chem. Theory Comput. 2025;21(11):5533–5544. doi: 10.1021/acs.jctc.5c00428. PubMed DOI PMC
Greenwell C., McKinley J. L., Zhang P., Zeng Q., Sun G., Li B., Wen S., Beran G. J. O.. Overcoming the difficulties of predicting conformational polymorph energetics in molecular crystals via correlated wavefunction methods. Chem. Sci. 2020;11(8):2200–2214. doi: 10.1039/C9SC05689K. PubMed DOI PMC
Yang J., Hu W., Usvyat D., Matthews D., Schütz M., Chan G. K.-L.. Ab initio determination of the crystalline benzene lattice energy to sub-kilojoule/mol accuracy. Science. 2014;345(6197):640–643. doi: 10.1126/science.1254419. PubMed DOI
Kirchner B., Hollóczki O., Lopes J. N. C., Pádua A. A. H.. Multiresolution calculation of ionic liquids. WIREs Comput. Mol. Sci. 2015;5(2):202–214. doi: 10.1002/wcms.1212. DOI
Beran G. J. O., Wright S. E., Greenwell C., Cruz-Cabeza A. J.. The interplay of intra- and intermolecular errors in modeling conformational polymorphs. J. Chem. Phys. 2022;156(10):104112. doi: 10.1063/5.0088027. PubMed DOI
Bore S. L., Paesani F.. Realistic phase diagram of water from “first principles” data-driven quantum simulations. Nat. Commun. 2023;14(1):3349. doi: 10.1038/s41467-023-38855-1. PubMed DOI PMC
Gillan M. J., Alfè D., Michaelides A.. Perspective: How good is DFT for water? J. Chem. Phys. 2016;144(13):130901. doi: 10.1063/1.4944633. PubMed DOI
Del Ben M., Schütt O., Wentz T., Messmer P., Hutter J., VandeVondele J.. Enabling simulation at the fifth rung of DFT: Large scale RPA calculations with excellent time to solution. Comput. Phys. Commun. 2015;187:120–129. doi: 10.1016/j.cpc.2014.10.021. DOI
Willow S. Y., Zeng X. C., Xantheas S. S., Kim K. S., Hirata S.. Why Is MP2-Water “Cooler” and “Denser” than DFT-Water. J. Phys. Chem. Lett. 2016;7(4):680–684. doi: 10.1021/acs.jpclett.5b02430. PubMed DOI
Wagner W., Pruß A.. The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. J. Phys. Chem. Ref. Data. 2002;31(2):387–535. doi: 10.1063/1.1461829. DOI
van der Spoel D., van Maaren P. J., Berendsen H. J. C.. A systematic study of water models for molecular simulation: Derivation of water models optimized for use with a reaction field. J. Chem. Phys. 1998;108(24):10220–10230. doi: 10.1063/1.476482. DOI
Abascal J. L. F., Vega C.. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 2005;123(23):234505. doi: 10.1063/1.2121687. PubMed DOI
Del Ben M., Hutter J., VandeVondele J.. Probing the structural and dynamical properties of liquid water with models including non-local electron correlation. J. Chem. Phys. 2015;143(5):054506. doi: 10.1063/1.4927325. PubMed DOI
Rybkin V. V.. Sampling Potential Energy Surfaces in the Condensed Phase with Many-Body Electronic Structure Methods. Chem. - Eur. J. 2020;26(2):362–368. doi: 10.1002/chem.201904012. PubMed DOI
Cheng B., Engel E. A., Behler J., Dellago C., Ceriotti M.. Ab initio thermodynamics of liquid and solid water. Proc. Natl. Acad. Sci. U.S.A. 2019;116(4):1110–1115. doi: 10.1073/pnas.1815117116. PubMed DOI PMC
Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W., Klein M. L.. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79(2):926–935. doi: 10.1063/1.445869. DOI
Jorgensen W. L., Maxwell D. S., Tirado-Rives J.. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996;118(45):11225–11236. doi: 10.1021/ja9621760. DOI
Medders G. R., Babin V., Paesani F.. Development of a “First-Principles” Water Potential with Flexible Monomers. III. Liquid Phase Properties. J. Chem. Theory Comput. 2014;10(8):2906–2910. doi: 10.1021/ct5004115. PubMed DOI
Unke O. T., Chmiela S., Sauceda H. E., Gastegger M., Poltavsky I., Schütt K. T., Tkatchenko A., Müller K.-R.. Machine Learning Force Fields. Chem. Rev. 2021;121(16):10142–10186. doi: 10.1021/acs.chemrev.0c01111. PubMed DOI PMC
de Hijes P. M., Dellago C., Jinnouchi R., Schmiedmayer B., Kresse G.. Comparing machine learning potentials for water: Kernel-based regression and Behler–Parrinello neural networks. J. Chem. Phys. 2024;160(11):114107. doi: 10.1063/5.0197105. PubMed DOI
Zhang C., Tang F., Chen M., Xu J., Zhang L., Qiu D. Y., Perdew J. P., Klein M. L., Wu X.. Modeling Liquid Water by Climbing up Jacob’s Ladder in Density Functional Theory Facilitated by Using Deep Neural Network Potentials. J. Phys. Chem. B. 2021;125(41):11444–11456. doi: 10.1021/acs.jpcb.1c03884. PubMed DOI
Gupta S., Bull-Vulpe E. F., Agnew H., Iyer S., Zhu X., Zhou R., Knight C., Paesani F.. MBX V1.2: Accelerating Data-Driven Many-Body Molecular Dynamics Simulations. J. Chem. Theory Comput. 2025;21(4):1838–1849. doi: 10.1021/acs.jctc.4c01333. PubMed DOI
Zhang Y., Maginn E. J.. A comparison of methods for melting point calculation using molecular dynamics simulations. J. Chem. Phys. 2012;136(14):144116. doi: 10.1063/1.3702587. PubMed DOI
Dorner F., Sukurma Z., Dellago C., Kresse G.. Melting Si: Beyond Density Functional Theory. Phys. Rev. Lett. 2018;121(19):195701. doi: 10.1103/PhysRevLett.121.195701. PubMed DOI
Muniz M. C., Gartner T. E. III, Riera M., Knight C., Yue S., Paesani F., Panagiotopoulos A. Z.. Vapor–liquid equilibrium of water with the MB-pol many-body potential. J. Chem. Phys. 2021;154(21):211103. doi: 10.1063/5.0050068. PubMed DOI
Gardini A. T., Raucci U., Parrinello M.. Machine learning-driven molecular dynamics unveils a bulk phase transformation driving ammonia synthesis on barium hydride. Nat. Commun. 2025;16(1):2475. doi: 10.1038/s41467-025-57688-8. PubMed DOI PMC
Wang T., He X., Li M., Li Y., Bi R., Wang Y., Cheng C., Shen X., Meng J., Zhang H.. et al. Ab initio characterization of protein molecular dynamics with AI2BMD. Nature. 2024;635(8040):1019–1027. doi: 10.1038/s41586-024-08127-z. PubMed DOI PMC
Nickerson C. J., Johnson E. R.. Assessment of a foundational machine-learned potential for energy ranking of molecular crystal polymorphs. Phys. Chem. Chem. Phys. 2025;27(22):11930–11940. doi: 10.1039/D5CP00593K. PubMed DOI
Řezáč J., Hobza P.. Describing Noncovalent Interactions beyond the Common Approximations: How Accurate Is the “Gold Standard,” CCSD(T) at the Complete Basis Set Limit. J. Chem. Theory Comput. 2013;9(5):2151–2155. doi: 10.1021/ct400057w. PubMed DOI
McGrath M. J., Siepmann J. I., Kuo I. F. W., Mundy C. J., VandeVondele J., Hutter J., Mohamed F., Krack M.. Isobaric–Isothermal Monte Carlo Simulations from First Principles: Application to Liquid Water at Ambient Conditions. ChemPhysChem. 2005;6(9):1894–1901. doi: 10.1002/cphc.200400580. PubMed DOI
Fetisov E. O., Shah M. S., Long J. R., Tsapatsis M., Siepmann J. I.. First principles Monte Carlo simulations of unary and binary adsorption: CO2, N2, and H2O in Mg-MOF-74. Chem. Commun. 2018;54(77):10816–10819. doi: 10.1039/C8CC06178E. PubMed DOI
Li Z., Winisdoerffer C., Soubiran F., Caracas R.. Ab initio Gibbs ensemble Monte Carlo simulations of the liquid–vapor equilibrium and the critical point of sodium. Phys. Chem. Chem. Phys. 2021;23(1):311–319. doi: 10.1039/D0CP04158K. PubMed DOI
McGrath M. J., Kuo I. F. W., Ghogomu J. N., Mundy C. J., Siepmann J. I.. Vapor–Liquid Coexistence Curves for Methanol and Methane Using Dispersion-Corrected Density Functional Theory. J. Phys. Chem. B. 2011;115(40):11688–11692. doi: 10.1021/jp205072v. PubMed DOI
Jadrich R. B., Leiding J. A.. Accelerating Ab Initio Simulation via Nested Monte Carlo and Machine Learned Reference Potentials. J. Phys. Chem. B. 2020;124(26):5488–5497. doi: 10.1021/acs.jpcb.0c03738. PubMed DOI
Leiding J., Coe J. D.. An efficient approach to ab initio Monte Carlo simulation. J. Chem. Phys. 2014;140(3):034106. doi: 10.1063/1.4855755. PubMed DOI
Shah J. K., Maginn E. J.. A general and efficient Monte Carlo method for sampling intramolecular degrees of freedom of branched and cyclic molecules. J. Chem. Phys. 2011;135(13):134121. doi: 10.1063/1.3644939. PubMed DOI
Piazza L., Span R.. An equation of state for methanol including the association term of SAFT. Fluid Phase Equilib. 2013;349:12–24. doi: 10.1016/j.fluid.2013.03.024. DOI
Ihmels E. C., Lemmon E. W.. Experimental densities, vapor pressures, and critical point, and a fundamental equation of state for dimethyl ether. Fluid Phase Equilib. 2007;260(1):36–48. doi: 10.1016/j.fluid.2006.09.016. DOI
Červinka, C. FrAMonC github repository 2025. https://github.com/CervinkaGroup/FrAMonC.
Shah J. K., Marin-Rimoldi E., Marin-Rimoldi E., Mullen R. G., Keene B. P., Khan S., Paluch A. S., Rai N., Romanielo L. L., Rosch T. W., Yoo B.. Cassandra: An open source Monte Carlo package for molecular simulation. J. Comput. Chem. 2017;38(19):1727–1739. doi: 10.1002/jcc.24807. PubMed DOI
Gaus M., Cui Q., Elstner M.. DFTB3: Extension of the Self-Consistent-Charge Density-Functional Tight-Binding Method (SCC-DFTB) J. Chem. Theory Comput. 2011;7(4):931–948. doi: 10.1021/ct100684s. PubMed DOI PMC
Hourahine B., Aradi B., Blum V., Bonafé F., Buccheri A., Camacho C., Cevallos C., Deshaye M. Y., Dumitrică T., Dominguez A.. et al. DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. J. Chem. Phys. 2020;152(12):124101. doi: 10.1063/1.5143190. PubMed DOI
Gaus M., Goez A., Elstner M.. Parametrization and Benchmark of DFTB3 for Organic Molecules. J. Chem. Theory Comput. 2013;9(1):338–354. doi: 10.1021/ct300849w. PubMed DOI
Kubillus M., Kubař T., Gaus M., Řezáč J., Elstner M.. Parameterization of the DFTB3Method for Br, Ca, Cl, F, I, K, and Na in Organic and Biological Systems. J. Chem. Theory Comput. 2015;11(1):332–342. doi: 10.1021/ct5009137. PubMed DOI
Perdew J. P., Burke K., Ernzerhof M.. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77(18):3865. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Kresse G., Furthmüller J.. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54(16):11169. doi: 10.1103/PhysRevB.54.11169. PubMed DOI
Kresse G., Furthmüller J.. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996;6(1):15–50. doi: 10.1016/0927-0256(96)00008-0. DOI
Blöchl P. E.. Projector augmented-wave method. Phys. Rev. B. 1994;50(24):17953. doi: 10.1103/PhysRevB.50.17953. PubMed DOI
Kresse G., Joubert D.. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59(3):1758. doi: 10.1103/PhysRevB.59.1758. DOI
Grimme S., Ehrlich S., Goerigk L.. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011;32(7):1456–1465. doi: 10.1002/jcc.21759. PubMed DOI
Werner H.-J., Manby F. R.. Explicitly correlated second-order perturbation theory using density fitting and local approximations. J. Chem. Phys. 2006;124(5):054114. doi: 10.1063/1.2150817. PubMed DOI
Stoychev G. L., Auer A. A., Neese F.. Automatic Generation of Auxiliary Basis Sets. J. Chem. Theory Comput. 2017;13(2):554–562. doi: 10.1021/acs.jctc.6b01041. PubMed DOI
Riplinger C., Neese F.. An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys. 2013;138(3):034106. doi: 10.1063/1.4773581. PubMed DOI
Neese F., Hansen A., Liakos D. G.. Efficient and accurate approximations to the local coupled cluster singles doubles method using a truncated pair natural orbital basis. J. Chem. Phys. 2009;131(6):064103. doi: 10.1063/1.3173827. PubMed DOI
Riplinger C., Sandhoefer B., Hansen A., Neese F.. Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J. Chem. Phys. 2013;139(13):134101. doi: 10.1063/1.4821834. PubMed DOI
Helgaker T., Klopper W., Koch H., Noga J.. Basis-set convergence of correlated calculations on water. J. Chem. Phys. 1997;106(23):9639–9646. doi: 10.1063/1.473863. DOI
Zhong S., Barnes E. C., Petersson G. A.. Uniformly convergent n-tuple-ζ augmented polarized (nZaP) basis sets for complete basis set extrapolations. I. Self-consistent field energies. J. Chem. Phys. 2008;129(18):184116. doi: 10.1063/1.3009651. PubMed DOI
Neese F., Valeev E. F.. Revisiting the Atomic Natural Orbital Approach for Basis Sets: Robust Systematic Basis Sets for Explicitly Correlated and Conventional Correlated ab initio Methods. J. Chem. Theory Comput. 2011;7(1):33–43. doi: 10.1021/ct100396y. PubMed DOI
Neese F., Wennmohs F., Becker U., Riplinger C.. The ORCA quantum chemistry program package. J. Chem. Phys. 2020;152(22):224108. doi: 10.1063/5.0004608. PubMed DOI
Neese F.. Software update: The ORCA program systemVersion 5.0. WIREs Comput. Mol. Sci. 2022;12(5):e1606. doi: 10.1002/wcms.1606. DOI
Neese F.. The SHARK integral generation and digestion system. J. Comput. Chem. 2023;44(3):381–396. doi: 10.1002/jcc.26942. PubMed DOI
Oliveira D. V., Laun J., Peintinger M. F., Bredow T.. BSSE-correction scheme for consistent gaussian basis sets of double- and triple-zeta valence with polarization quality for solid-state calculations. J. Comput. Chem. 2019;40(27):2364–2376. doi: 10.1002/jcc.26013. PubMed DOI
Erba A., Desmarais J. K., Casassa S., Civalleri B., Donà L., Bush I. J., Searle B., Maschio L., Edith-Daga L., Cossard A.. et al. CRYSTAL23: A Program for Computational Solid State Physics and Chemistry. J. Chem. Theory Comput. 2023;19(20):6891–6932. doi: 10.1021/acs.jctc.2c00958. PubMed DOI PMC
Wu J., Magee J. W.. Heat Capacity of Saturated and Compressed Liquid Dimethyl Ether at Temperatures from (132 to 345) K and at Pressures to 35 MPa. J. Chem. Eng. Data. 2018;63(5):1713–1723. doi: 10.1021/acs.jced.8b00037. DOI
Skinner L. B., Benmore C. J., Neuefeind J. C., Parise J. B.. The structure of water around the compressibility minimum. J. Chem. Phys. 2014;141(21):214507. doi: 10.1063/1.4902412. PubMed DOI
Frenkel M., Chirico R. D., Diky V., Yan X., Dong Q., Muzny C.. ThermoData Engine (TDE): Software Implementation of the Dynamic Data Evaluation Concept. J. Chem. Inf. Model. 2005;45(4):816–838. doi: 10.1021/ci050067b. PubMed DOI
Dias R. F., da Costa C. C., Manhabosco T. M., de Oliveira A. B., Matos M. J. S., Soares J. S., Batista R. J. C.. Ab initio molecular dynamics simulation of methanol and acetonitrile: The effect of van der Waals interactions. Chem. Phys. Lett. 2019;714:172–177. doi: 10.1016/j.cplett.2018.10.085. DOI
Morrone J. A., Tuckerman M. E.. Ab initio molecular dynamics study of proton mobility in liquid methanol. J. Chem. Phys. 2002;117(9):4403–4413. doi: 10.1063/1.1496457. DOI
Sieffert N., Bühl M., Gaigeot M. P., Morrison C. A.. Liquid Methanol from DFT and DFT/MM Molecular Dynamics Simulations. J. Chem. Theory Comput. 2013;9(1):106–118. doi: 10.1021/ct300784x. PubMed DOI
Handgraaf J. W., Meijer E. J., Gaigeot M. P.. Density-functional theory-based molecular simulation study of liquid methanol. J. Chem. Phys. 2004;121(20):10111–10119. doi: 10.1063/1.1809595. PubMed DOI
Růžička K., Fulem M., Červinka C.. Recommended sublimation pressure and enthalpy of benzene. J. Chem. Thermodyn. 2014;68:40–47. doi: 10.1016/j.jct.2013.08.022. DOI
Craven R. J. B., de Reuck K. M.. Development of a vapour pressure equation for methanol. Fluid Phase Equilib. 1993;89(1):19–29. doi: 10.1016/0378-3812(93)85043-L. DOI
Wang X., Yang H., Wang M., Huai Z., Sun Z.. Virtual screening of cucurbituril host-guest complexes: Large-scale benchmark of end-point protocols under MM and QM Hamiltonians. J. Mol. Liq. 2024;407:125245. doi: 10.1016/j.molliq.2024.125245. DOI