Enhanced Intelligent Identification of Concrete Cracks Using Multi-Layered Image Preprocessing-Aided Convolutional Neural Networks

. 2020 Apr 03 ; 20 (7) : . [epub] 20200403

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32260302

Crack identification plays an essential role in the health diagnosis of various concrete structures. Among different intelligent algorithms, the convolutional neural networks (CNNs) has been demonstrated as a promising tool capable of efficiently identifying the existence and evolution of concrete cracks by adaptively recognizing crack features from a large amount of concrete surface images. However, the accuracy as well as the versatility of conventional CNNs in crack identification is largely limited, due to the influence of noise contained in the background of the concrete surface images. The noise originates from highly diverse sources, such as light spots, blurs, surface roughness/wear/stains. With the aim of enhancing the accuracy, noise immunity, and versatility of CNN-based crack identification methods, a framework of enhanced intelligent identification of concrete cracks is established in this study, based on a hybrid utilization of conventional CNNs with a multi-layered image preprocessing strategy (MLP), of which the key components are homomorphic filtering and the Otsu thresholding method. Relying on the comparison and fine-tuning of classic CNN structures, networks for detection of crack position and identification of crack type are built, trained, and tested, based on a dataset composed of a large number of concrete crack images. The effectiveness and efficiency of the proposed framework involving the MLP and the CNN in crack identification are examined by comparative studies, with and without the implementation of the MLP strategy. Crack identification accuracy subject to different sources and levels of noise influence is investigated.

Zobrazit více v PubMed

Song G., Ma N., Li H.-N. Applications of shape memory alloys in civil structures. Eng. Struct. 2006;28:1266–1274. doi: 10.1016/j.engstruct.2005.12.010. DOI

Song G., Gu H., Mo Y.-L. Smart aggregates: Multi-functional sensors for concrete structures—A tutorial and a review. Smart Mater. Struct. 2008;17:033001. doi: 10.1088/0964-1726/17/3/033001. DOI

Bayat M., Pakar I., Domairry G. Recent developments of some asymptotic methods and their applications for nonlinear vibration equations in engineering problems: A review. Lat. Am. J. Solids Struct. 2012;9:1–93. doi: 10.1590/S1679-78252012000200003. DOI

Phares B.M., Rolander D.D., Graybeal B.A., Washer G.A. Reliability of visual bridge inspection. Public Roads. 2001:64.

Chen P.-H., Shen H.-K., Lei C.-Y., Chang L.-M. Support-vector-machine-based method for automated steel bridge rust assessment. Autom. Constr. 2012;23:9–19. doi: 10.1016/j.autcon.2011.12.001. DOI

Otsu N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. ManCybern. 1979;9:62–66. doi: 10.1109/TSMC.1979.4310076. DOI

Vala H.J., Baxi A. A review on Otsu image segmentation algorithm. Int. J. Adv. Res. Comput. Eng. Technol. (Ijarcet) 2013;2:387–389.

Kirschke K., Velinsky S. Histogram-based approach for automated pavement-crack sensing. J. Transp. Eng. 1992;118:700–710. doi: 10.1061/(ASCE)0733-947X(1992)118:5(700). DOI

Oh H., Garrick N.W., Achenie L.E. Segmentation algorithm using iterative clipping for processing noisy pavement images; Proceedings of the Imaging Technologies: Techniques and Applications in Civil Engineering. Second International ConferenceEngineering Foundation; and Imaging Technologies Committee of the Technical Council on Computer Practices; Davos, Switzerland. 25–30 May 1997; Reston, VA, USA: American Society of Civil Engineers; 1998.

Bonnet N., Cutrona J., Herbin M. A ‘no-threshold’histogram-based image segmentation method. Pattern Recognit. 2002;35:2319–2322. doi: 10.1016/S0031-3203(02)00057-2. DOI

Oliveira H., Correia P.L. Automatic Road Crack Segmentation using Entropy and Image Dynamic Thresholding; Proceedings of the 2009 17th European Signal Processing Conference; Glasgow, UK. 24–28 August 2009; pp. 622–626.

Al-Amri S.S., Kalyankar N.V. Image segmentation by using threshold techniques. arXiv. 20101005.4020

Migdal J., Grimson W.E.L. Background subtraction using markov thresholds; Proceedings of the 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION’05)-Volume 1; Breckenridge, CO, USA. 5–7 January 2005; pp. 58–65.

Muthukrishnan R., Radha M. Edge detection techniques for image segmentation. Int. J. Comput. Sci. Inf. Technol. 2011;3:259.

Ziou D., Tabbone S. Edge detection techniques-an overview. Pattern Recognit. Image Anal. C/C Raspoznavaniye Obraz. I Anal. Izobr. 1998;8:537–559.

Rudin L.I., Osher S., Fatemi E. Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 1992;60:259–268.

Cha Y.-J., You K., Choi W. Vision-based detection of loosened bolts using the Hough transform and support vector machines. Autom. Constr. 2016;71:181–188.

Ayenu-Prah A., Attoh-Okine N. Evaluating pavement cracks with bidimensional empirical mode decomposition. Eurasip J. Adv. Signal Process. 2008;2008:1–7.

Acharya T., Tsai P.-S. Edge-detection Based Noise Removal Algorithm. 6,229,578. US Patent. 2001 May 8;

Maode Y., Shaobo B., Kun X., Yuyao H. Pavement crack detection and analysis for high-grade highway; Proceedings of the 2007 8th International Conference on Electronic Measurement and Instruments; Xi’an, China. 16–18 August 2007; pp. 4-548–4-552.

Zhou J., Huang P.S., Chiang F.-P. Wavelet-based pavement distress detection and evaluation. Opt. Eng. 2006;45:027007.

Knezevic M., Cvetkovska M., Hanák T., Braganca L., Soltesz A. Artificial Neural Networks and Fuzzy Neural Networks for Solving Civil Engineering Problems. Complexity. 2018;2018 doi: 10.1155/2018/8149650. DOI

Cha Y.-J., Choi W. Dynamics of Civil Structures. Volume 2. Springer; Cham, Switzerland: 2017. Vision-based concrete crack detection using a convolutional neural network; pp. 71–73.

Simard P.Y., Steinkraus D., Platt J.C. Best practices for convolutional neural networks applied to visual document analysis; Proceedings of the ICDAR; Edinburgh, UK. 3–6 August 2003; Washington, DC, USA: IEEE Computer Society; 2003. pp. 958–962.

Shin H.-C., Roth H.R., Gao M., Lu L., Xu Z., Nogues I., Yao J., Mollura D., Summers R.M. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med Imaging. 2016;35:1285–1298. doi: 10.1109/TMI.2016.2528162. PubMed DOI PMC

Yan Z., Zhang H., Piramuthu R., Jagadeesh V., DeCoste D., Di W., Yu Y. HD-CNN: Hierarchical deep convolutional neural networks for large scale visual recognition; Proceedings of the IEEE International Conference on Computer Vision; Santiago, Chile. 7–13 December 2015; pp. 2740–2748.

Radenović F., Tolias G., Chum O. Proceedings of the European Conference on Computer Vision. Springer; Cham, Switzerland: 2016. CNN image retrieval learns from BoW: Unsupervised fine-tuning with hard examples; pp. 3–20.

Chen F.-C., Jahanshahi M.R. NB-CNN: Deep learning-based crack detection using convolutional neural network and Naïve Bayes data fusion. IEEE Trans. Ind. Electron. 2017;65:4392–4400. doi: 10.1109/TIE.2017.2764844. DOI

Browne M., Ghidary S.S. Convolutional neural networks for image processing: An application in robot vision; Proceedings of the Australasian Joint Conference on Artificial Intelligence; Melbourne, Australia. 4–7 December 2003; Berlin/Heidelberg, Germany: Springer; 2003. pp. 641–652.

Cha Y.J., Choi W., Büyüköztürk O. Deep learning-based crack damage detection using convolutional neural networks. Comput. Aided Civ. Infrastruct. Eng. 2017;32:361–378. doi: 10.1111/mice.12263. DOI

Zhao X., Li S. A method of crack detection based on convolutional neural networks; Proceedings of the 11th International Workshop on Structural Health Monitoring; Menlo Park, CA, USA. 12–14 September 2017; pp. 978–984.

Zhang L., Yang F., Zhang Y.D., Zhu Y.J. Road crack detection using deep convolutional neural network; Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP); Phoenix, AZ, USA. 25–28 September 2016; pp. 3708–3712.

Gavilán M., Balcones D., Marcos O., Llorca D.F., Sotelo M.A., Parra I., Ocaña M., Aliseda P., Yarza P., Amírola A. Adaptive road crack detection system by pavement classification. Sensors. 2011;11:9628–9657. PubMed PMC

Zhang K., Zuo W., Chen Y., Meng D., Zhang L. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 2017;26:3142–3155. PubMed

Fries R., Modestino J. Image enhancement by stochastic homomorphic filtering. IEEE Trans. Acoust. SpeechSignal Process. 1979;27:625–637.

Lee Y.-L., Park H.-W. Signal Adaptive Filtering Method and Signal Adaptive Filter for Reducing Blocking Effect and Ringing Noise. No. 6,259,823. Google Patents, U.S. Patent. 2001 Jul 10;

Ma Z., He K., Wei Y., Sun J., Wu E. Constant time weighted median filtering for stereo matching and beyond; Proceedings of the IEEE International Conference on Computer Vision; Sydney, Australia. 1–8 December 2013; pp. 49–56.

Ioannou Y., Robertson D., Cipolla R., Criminisi A. Deep roots: Improving cnn efficiency with hierarchical filter groups; Proceedings of the IEEE conference on computer vision and pattern recognition; Honolulu, HI, USA. 21–26 July 2017; pp. 1231–1240.

Miao S., Wang Z.J., Liao R. A CNN regression approach for real-time 2D/3D registration. IEEE Trans. Med Imaging. 2016;35:1352–1363. PubMed

Leshno M., Lin V.Y., Pinkus A., Schocken S. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Netw. 1993;6:861–867.

Glorot X., Bordes A., Bengio Y. Deep sparse rectifier neural networks; Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics; Ft. Lauderdale, FL, USA. 11–13 April 2011; pp. 315–323.

Krizhevsky A., Sutskever I., Hinton G.E. Imagenet classification with deep convolutional neural networks; Proceedings of the Advances in neural information processing systems; Lake Tahoe, NV, USA. 3–6 December 2012; pp. 1097–1105.

Ioffe S., Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv. 20151502.03167

Srivastava N., Hinton G., Krizhevsky A., Sutskever I., Salakhutdinov R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014;15:1929–1958.

Jang E., Gu S., Poole B. Categorical reparameterization with gumbel-softmax. arXiv. 20161611.01144

Burges C., Shaked T., Renshaw E., Lazier A., Deeds M., Hamilton N., Hullender G. Learning to rank using gradient descent; Proceedings of the 22nd International Conference on Machine Learning; Bonn, Germany. 7–11 August 2005; pp. 89–96.

Krizhevsky A., Hinton G. Convolutional deep belief networks on cifar-10. Unpubl. Manuscr. 2010;40:1–9.

Schmugge S.J., Rice L., Nguyen N.R., Lindberg J., Grizzi R., Joffe C., Shin M.C. Detection of cracks in nuclear power plant using spatial-temporal grouping of local patches; Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision (WACV); Lake Placid, NY, USA. 7–10 March 2016; pp. 1–7.

Hay A. The derivation of global estimates from a confusion matrix. Int. J. Remote Sens. 1988;9:1395–1398.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...