In Vitro Enzyme Inhibitory Properties, Secondary Metabolite Profiles and Multivariate Analysis of Five Seaweeds
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
32276531
PubMed Central
PMC7230894
DOI
10.3390/md18040198
PII: md18040198
Knihovny.cz E-resources
- Keywords
- antioxidants, bioactive metabolites, biological activities, seaweeds, tyrosinase,
- MeSH
- Antioxidants analysis MeSH
- Enzyme Assays MeSH
- Phytochemicals analysis MeSH
- Enzyme Inhibitors analysis MeSH
- Humans MeSH
- Seaweed chemistry MeSH
- Multivariate Analysis MeSH
- Chromatography, High Pressure Liquid MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antioxidants MeSH
- Phytochemicals MeSH
- Enzyme Inhibitors MeSH
Seaweeds have been exploited as both food products and therapeutics to manage human ailments for centuries. This study investigated the metabolite profile of five seaweeds (Halimeda spp., Spyridia hypnoides (Bory de Saint-Vincent) Papenfuss, Valoniopsis pachynema (G. Martens) Børgesen, Gracilaria fergusonii J. Agardh and Amphiroa anceps (Lamarck) Decaisne using ultra-high-performance liquid chromatography coupled with electrospray ionization mass spectrometry (UHPLC-ESI-MS/MS). Furthermore, these seaweeds were assessed for antioxidant and inhibitory effects against α-amylase, α-glucosidase, acetyl-cholinesterase (AChE), butyryl-cholinesterase (BChE) and tyrosinase. Valoniopsis pachynema and A. anceps yielded the highest flavonoid (4.30 ± 0.29 mg RE/g) and phenolic content (7.83 ± 0.08 mg RE/g), respectively. Additionally, A. anceps exhibited significant antioxidant properties with all assays and significantly depressed BChE (IC50 = 6.68 ± 0.83 mg/mL) and α-amylase activities (IC50 = 5.34 ± 0.14 mg/mL). Interestingly, the five seaweeds revealed potent inhibitory effects against tyrosinase activity. In conclusion, A. anceps might be considered as a key source of phytoantioxidants and a potential candidate to develop nutritional supplements. Besides, the five tested seaweeds warrant further study and may be exploited as promising natural sources for managing hyperpigmentation.
Department of Biology Science Faculty Selcuk University Konya 42250 Turkey
Department of Bioresources and Food Science Konkuk University Seoul 05029 Korea
Department of Health Sciences Faculty of Science University of Mauritius Réduit 80837 Mauritius
Faculty of Forestry and Wood Sciences Czech University of Life Sciences 16500 Prague Czech Republic
Institute of Research and Development Duy Tan University Da Nang 550000 Vietnam
See more in PubMed
Davis G.D.J., Vasanthi A.H.R. Seaweed metabolite database (SWMD): A database of natural compounds from marine algae. Bioinformation. 2011;5:361. doi: 10.6026/97320630005361. PubMed DOI PMC
Perun B. Blane’s Perun: The Sea. [(accessed on 11 September 2019)];2019 Available online: https://www.thesea.org/does-seaweed-produce-oxygen/
Fleurence J. Chapter 5—Seaweeds as Food. In: Fleurence J., Levine I., editors. Seaweed in Health and Disease Prevention. Academic Press; San Diego, CA, USA: 2016. pp. 149–167.
De Almeida C.L.F., Falcão H.d.S., Lima G.R.d.M., Montenegro C.d.A., Lira N.S., de Athayde-Filho P.F., Rodrigues L.C., de Souza M.d.F.V., Barbosa-Filho J.M., Batista L.M. Bioactivities from marine algae of the genus Gracilaria. Int. J. Mol. Sci. 2011;12:4550–4573. doi: 10.3390/ijms12074550. PubMed DOI PMC
Shelar P., Kumar V., Gauri S., Harkulkar G., Kavitha M., Kumar G., Vidya G., Reddy S. Medicinal value of seaweeds and its applications—A review. Cont. J. Pharmacol. Toxicol. Res. 2012;5:1–22.
Adey W.H., Loveland K. Dynamic Aquaria: Building Living Ecosystems. Elsevier; London, UK: 2011.
Silva A., Novoa A., Gutierrez D., Filho J. Seaweeds from Halimeda Genus as Sources of Natural Antioxidants. J. Anal. Pharm. Res. 2017:5. doi: 10.15406/japlr.2017.05.00158. DOI
Anderson R., Stegenga H., Bolton J. Seaweeds of the South African South Coast. World Wide Web Electronic Publication, University of Cape Town. [(accessed on 20 September 2019)];2016 Available online: http://southafrseaweeds.uct.ac.za.
Ahmed S., Hasan M., Ali M., Azhar I. Antiemetic activity of Iyengaria stellata and Valoniopsis pachynema in chicks. Int. J. Phycol. Phycochem. 2012;8:127–132.
N Kumar R., Patel K., Viyol S., Bhoi R. Nutrient Composition and Calorific Value of Some Seaweeds from Bet Dwarka, West Coast of Gujarat, India. Our Nat. 2010:7. doi: 10.3126/on.v7i1.2565. DOI
Othman M.N.A., Hassan R., Harith M.N., Sah A.S.R.M. Morphological Characteristics and Habitats of Red Seaweed Gracilaria spp. (Gracilariaceae, Rhodophyta) in Santubong and Asajaya, Sarawak, Malaysia. Trop. Life Sci. Res. 2018;29:87–101. doi: 10.21315/tlsr2018.29.1.6. PubMed DOI PMC
Chalini K., Johnson M., Adaikalaraj G., Vidyarani G., Ramakrishnan P. Anti-Inflammatory Activity of Aqueous Extracts of Gracilaria. Int. J. Curr. Pharm. Res. 2017:9. doi: 10.22159/ijcpr.2017v9i5.22130. DOI
Lubobi S., Matunda C., Kumar V., Omboki B. Isolation of Bioactive Secondary Metabolites from Seaweeds Amphiroa anceps against Chicken Meat Associated Pathogens. J. Antimicrob. 2016;2:2.
Vimal A., Kumar A. Chapter 35—Transforming the Healthcare System Through Therapeutic Enzymes. In: Kuddus M., editor. Enzymes in Food Biotechnology. Academic Press; London, UK: 2019. pp. 603–625.
San Miguel-Chávez R. Phenolic antioxidant capacity: A review of the state of the art. Phenolic Compd. Biol. Act. 2017 doi: 10.5772/66897. DOI
Mozahheb N., Arefian E., Amoozegar M.A. Designing a whole cell bioreporter to show antioxidant activities of agents that work by promotion of the KEAP1-NRF2 signaling pathway. Sci. Rep. 2019;9:3248. doi: 10.1038/s41598-019-39011-w. PubMed DOI PMC
Santos-Sánchez N.F., Salas-Coronado R., Villanueva-Cañongo C., Hernández-Carlos B. Antioxidants. IntechOpen; London, UK: 2019. Antioxidant Compounds and Their Antioxidant Mechanism.
Ahmad R. Introductory Chapter: Basics of Free Radicals and Antioxidants, Free Radicals, Antioxidants and Diseases, IntechOpen. [(accessed on 8 September 2019)]; doi: 10.5772/intechopen.76689. Available online: https://www.intechopen.com/books/free-radicals-antioxidants-and-diseases/introductory-chapter-basics-of-free-radicals-and-antioxidants. DOI
Muddathir A.M., Yamauchi K., Batubara I., Mohieldin E.A.M., Mitsunaga T. Anti-tyrosinase, total phenolic content and antioxidant activity of selected Sudanese medicinal plants. S. Afr. J. Bot. 2017;109:9–15. doi: 10.1016/j.sajb.2016.12.013. DOI
De S., Devasagayam T.P.A., Menon V. Antioxidant properties of a novel marine analogue of dendrodoine. BARC News Lett. 2006;273:511–512.
Nagai T., Yukimoto T. Preparation and functional properties of beverages made from sea algae. Food Chem. 2003;81:327–332. doi: 10.1016/S0308-8146(02)00426-0. DOI
Marimuthu Antonisamy J., Sankara Raj E.D. UV–VIS and HPLC studies on Amphiroa anceps (Lamarck) Decaisne. Arab. J. Chem. 2016;9:S907–S913. doi: 10.1016/j.arabjc.2011.09.005. DOI
Choi J.S., Koh I.-U., Lee H.J., Kim W.H., Song J. Effects of excess dietary iron and fat on glucose and lipid metabolism. J. Nutr. Biochem. 2013;24:1634–1644. doi: 10.1016/j.jnutbio.2013.02.004. PubMed DOI
Olszowy M., Dawidowicz A.L. Is it possible to use the DPPH and ABTS methods for reliable estimation of antioxidant power of colored compounds? Chem. Pap. 2018;72:393–400. doi: 10.1007/s11696-017-0288-3. DOI
Prieto P., Pineda M., Aguilar M. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal. Biochem. 1999;269:337–341. doi: 10.1006/abio.1999.4019. PubMed DOI
WHO . World Health Statistics Overview 2019: Monitoring Health for the SDGs, Sustainable Development Goals. World Health Organization; Geneva, Switzerland: 2019.
Jeewon R., Luckhun A.B., Bhoyroo V., Sadeer N.B., Mahomoodally M.F., Rampadarath S., Puchooa D., Sarma V.V., Durairajan S.S.K., Hyde K.D. Pharmaceutical Potential of Marine Fungal Endophytes. In: Jha S., editor. Endophytes and Secondary Metabolites. Springer International Publishing; Cham, Switzerland: 2019. pp. 1–23.
Reale M., Costantini E., Di Nicola M., D’Angelo C., Franchi S., D’Aurora M., Di Bari M., Orlando V., Galizia S., Ruggieri S., et al. Butyrylcholinesterase and Acetylcholinesterase polymorphisms in Multiple Sclerosis patients: Implication in peripheral inflammation. Sci. Rep. 2018;8:1319. doi: 10.1038/s41598-018-19701-7. PubMed DOI PMC
Adeyinka A., Kondamudi N. StatPearls [Internet] StatPearls Publishing; Treasure Island, FL, USA: 2019. [(accessed on 9 September 2019)]. Cholinergic Crisis. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482433/
Lane R.M., Potkin S.G., Enz A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int. J. Neuropsychopharmacol. 2006;9:101–124. doi: 10.1017/S1461145705005833. PubMed DOI
WHO. [(accessed on 9 September 2019)];2019 Available online: https://www.who.int/news-room/feature-stories/detail/treating-diabetes-takes-more-than-insulin-senegal-mobile-phone-project-promoting-public-health.
Akata I., Zengin G., Picot C.M.N., Mahomoodally M.F. Enzyme inhibitory and antioxidant properties of six mushroom species from the Agaricaceae family. S. Afr. J. Bot. 2019;120:95–99. doi: 10.1016/j.sajb.2018.01.008. DOI
Barros M.R., Menezes T.M., da Silva L.P., Pires D.S., Princival J.L., Seabra G., Neves J.L. Furan inhibitory activity against tyrosinase and impact on B16F10 cell toxicity. Int. J. Biol. Macromol. 2019;136:1034–1041. doi: 10.1016/j.ijbiomac.2019.06.120. PubMed DOI
Cseke L.J., Kirakosyan A., Kaufman P.B., Warber S., Duke J.A., Brielmann H.L. Natural Products from Plants. CRC Press; Boca Raton, FL, USA: 2016.
Gnanavel V., Roopan S.M., Rajeshkumar S. Aquaculture: An overview of chemical ecology of seaweeds (food species) in natural products. Aquaculture. 2019;507:1–6. doi: 10.1016/j.aquaculture.2019.04.004. DOI
Watson R.R. Polyphenols in Plants: Isolation, Purification and Extract Preparation. Academic Press; London, UK: 2018.
Rengasamy K.R.R., Sadeer N.B., Zengin G., Mahomoodally M.F., Cziáky Z., Jekő J., Diuzheva A., Abdallah H.H., Kim D.H. Biopharmaceutical potential, chemical profile and in silico study of the seagrass–Syringodium isoetifolium (Asch.) Dandy. S. Afr. J. Bot. 2019;127:167–175. doi: 10.1016/j.sajb.2019.08.043. DOI
Zengin G., Aktumsek A. Investigation of antioxidant potentials of solvent extracts from different anatomical parts of Asphodeline anatolica E. Tuzlaci: An endemic plant to Turkey. Afr. J. Tradit. Complement.Altern. Med. 2014;11:481–488. doi: 10.4314/ajtcam.v11i2.37. PubMed DOI PMC
Zengin G. A study on in vitro enzyme inhibitory properties of Asphodeline anatolica: New sources of natural inhibitors for public health problems. Ind. Crops Prod. 2016;83:39–43. doi: 10.1016/j.indcrop.2015.12.033. DOI