• This record comes from PubMed

In Vitro Enzyme Inhibitory Properties, Secondary Metabolite Profiles and Multivariate Analysis of Five Seaweeds

. 2020 Apr 08 ; 18 (4) : . [epub] 20200408

Language English Country Switzerland Media electronic

Document type Journal Article

Seaweeds have been exploited as both food products and therapeutics to manage human ailments for centuries. This study investigated the metabolite profile of five seaweeds (Halimeda spp., Spyridia hypnoides (Bory de Saint-Vincent) Papenfuss, Valoniopsis pachynema (G. Martens) Børgesen, Gracilaria fergusonii J. Agardh and Amphiroa anceps (Lamarck) Decaisne using ultra-high-performance liquid chromatography coupled with electrospray ionization mass spectrometry (UHPLC-ESI-MS/MS). Furthermore, these seaweeds were assessed for antioxidant and inhibitory effects against α-amylase, α-glucosidase, acetyl-cholinesterase (AChE), butyryl-cholinesterase (BChE) and tyrosinase. Valoniopsis pachynema and A. anceps yielded the highest flavonoid (4.30 ± 0.29 mg RE/g) and phenolic content (7.83 ± 0.08 mg RE/g), respectively. Additionally, A. anceps exhibited significant antioxidant properties with all assays and significantly depressed BChE (IC50 = 6.68 ± 0.83 mg/mL) and α-amylase activities (IC50 = 5.34 ± 0.14 mg/mL). Interestingly, the five seaweeds revealed potent inhibitory effects against tyrosinase activity. In conclusion, A. anceps might be considered as a key source of phytoantioxidants and a potential candidate to develop nutritional supplements. Besides, the five tested seaweeds warrant further study and may be exploited as promising natural sources for managing hyperpigmentation.

See more in PubMed

Davis G.D.J., Vasanthi A.H.R. Seaweed metabolite database (SWMD): A database of natural compounds from marine algae. Bioinformation. 2011;5:361. doi: 10.6026/97320630005361. PubMed DOI PMC

Perun B. Blane’s Perun: The Sea. [(accessed on 11 September 2019)];2019 Available online: https://www.thesea.org/does-seaweed-produce-oxygen/

Fleurence J. Chapter 5—Seaweeds as Food. In: Fleurence J., Levine I., editors. Seaweed in Health and Disease Prevention. Academic Press; San Diego, CA, USA: 2016. pp. 149–167.

De Almeida C.L.F., Falcão H.d.S., Lima G.R.d.M., Montenegro C.d.A., Lira N.S., de Athayde-Filho P.F., Rodrigues L.C., de Souza M.d.F.V., Barbosa-Filho J.M., Batista L.M. Bioactivities from marine algae of the genus Gracilaria. Int. J. Mol. Sci. 2011;12:4550–4573. doi: 10.3390/ijms12074550. PubMed DOI PMC

Shelar P., Kumar V., Gauri S., Harkulkar G., Kavitha M., Kumar G., Vidya G., Reddy S. Medicinal value of seaweeds and its applications—A review. Cont. J. Pharmacol. Toxicol. Res. 2012;5:1–22.

Adey W.H., Loveland K. Dynamic Aquaria: Building Living Ecosystems. Elsevier; London, UK: 2011.

Silva A., Novoa A., Gutierrez D., Filho J. Seaweeds from Halimeda Genus as Sources of Natural Antioxidants. J. Anal. Pharm. Res. 2017:5. doi: 10.15406/japlr.2017.05.00158. DOI

Anderson R., Stegenga H., Bolton J. Seaweeds of the South African South Coast. World Wide Web Electronic Publication, University of Cape Town. [(accessed on 20 September 2019)];2016 Available online: http://southafrseaweeds.uct.ac.za.

Ahmed S., Hasan M., Ali M., Azhar I. Antiemetic activity of Iyengaria stellata and Valoniopsis pachynema in chicks. Int. J. Phycol. Phycochem. 2012;8:127–132.

N Kumar R., Patel K., Viyol S., Bhoi R. Nutrient Composition and Calorific Value of Some Seaweeds from Bet Dwarka, West Coast of Gujarat, India. Our Nat. 2010:7. doi: 10.3126/on.v7i1.2565. DOI

Othman M.N.A., Hassan R., Harith M.N., Sah A.S.R.M. Morphological Characteristics and Habitats of Red Seaweed Gracilaria spp. (Gracilariaceae, Rhodophyta) in Santubong and Asajaya, Sarawak, Malaysia. Trop. Life Sci. Res. 2018;29:87–101. doi: 10.21315/tlsr2018.29.1.6. PubMed DOI PMC

Chalini K., Johnson M., Adaikalaraj G., Vidyarani G., Ramakrishnan P. Anti-Inflammatory Activity of Aqueous Extracts of Gracilaria. Int. J. Curr. Pharm. Res. 2017:9. doi: 10.22159/ijcpr.2017v9i5.22130. DOI

Lubobi S., Matunda C., Kumar V., Omboki B. Isolation of Bioactive Secondary Metabolites from Seaweeds Amphiroa anceps against Chicken Meat Associated Pathogens. J. Antimicrob. 2016;2:2.

Vimal A., Kumar A. Chapter 35—Transforming the Healthcare System Through Therapeutic Enzymes. In: Kuddus M., editor. Enzymes in Food Biotechnology. Academic Press; London, UK: 2019. pp. 603–625.

San Miguel-Chávez R. Phenolic antioxidant capacity: A review of the state of the art. Phenolic Compd. Biol. Act. 2017 doi: 10.5772/66897. DOI

Mozahheb N., Arefian E., Amoozegar M.A. Designing a whole cell bioreporter to show antioxidant activities of agents that work by promotion of the KEAP1-NRF2 signaling pathway. Sci. Rep. 2019;9:3248. doi: 10.1038/s41598-019-39011-w. PubMed DOI PMC

Santos-Sánchez N.F., Salas-Coronado R., Villanueva-Cañongo C., Hernández-Carlos B. Antioxidants. IntechOpen; London, UK: 2019. Antioxidant Compounds and Their Antioxidant Mechanism.

Ahmad R. Introductory Chapter: Basics of Free Radicals and Antioxidants, Free Radicals, Antioxidants and Diseases, IntechOpen. [(accessed on 8 September 2019)]; doi: 10.5772/intechopen.76689. Available online: https://www.intechopen.com/books/free-radicals-antioxidants-and-diseases/introductory-chapter-basics-of-free-radicals-and-antioxidants. DOI

Muddathir A.M., Yamauchi K., Batubara I., Mohieldin E.A.M., Mitsunaga T. Anti-tyrosinase, total phenolic content and antioxidant activity of selected Sudanese medicinal plants. S. Afr. J. Bot. 2017;109:9–15. doi: 10.1016/j.sajb.2016.12.013. DOI

De S., Devasagayam T.P.A., Menon V. Antioxidant properties of a novel marine analogue of dendrodoine. BARC News Lett. 2006;273:511–512.

Nagai T., Yukimoto T. Preparation and functional properties of beverages made from sea algae. Food Chem. 2003;81:327–332. doi: 10.1016/S0308-8146(02)00426-0. DOI

Marimuthu Antonisamy J., Sankara Raj E.D. UV–VIS and HPLC studies on Amphiroa anceps (Lamarck) Decaisne. Arab. J. Chem. 2016;9:S907–S913. doi: 10.1016/j.arabjc.2011.09.005. DOI

Choi J.S., Koh I.-U., Lee H.J., Kim W.H., Song J. Effects of excess dietary iron and fat on glucose and lipid metabolism. J. Nutr. Biochem. 2013;24:1634–1644. doi: 10.1016/j.jnutbio.2013.02.004. PubMed DOI

Olszowy M., Dawidowicz A.L. Is it possible to use the DPPH and ABTS methods for reliable estimation of antioxidant power of colored compounds? Chem. Pap. 2018;72:393–400. doi: 10.1007/s11696-017-0288-3. DOI

Prieto P., Pineda M., Aguilar M. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal. Biochem. 1999;269:337–341. doi: 10.1006/abio.1999.4019. PubMed DOI

WHO . World Health Statistics Overview 2019: Monitoring Health for the SDGs, Sustainable Development Goals. World Health Organization; Geneva, Switzerland: 2019.

Jeewon R., Luckhun A.B., Bhoyroo V., Sadeer N.B., Mahomoodally M.F., Rampadarath S., Puchooa D., Sarma V.V., Durairajan S.S.K., Hyde K.D. Pharmaceutical Potential of Marine Fungal Endophytes. In: Jha S., editor. Endophytes and Secondary Metabolites. Springer International Publishing; Cham, Switzerland: 2019. pp. 1–23.

Reale M., Costantini E., Di Nicola M., D’Angelo C., Franchi S., D’Aurora M., Di Bari M., Orlando V., Galizia S., Ruggieri S., et al. Butyrylcholinesterase and Acetylcholinesterase polymorphisms in Multiple Sclerosis patients: Implication in peripheral inflammation. Sci. Rep. 2018;8:1319. doi: 10.1038/s41598-018-19701-7. PubMed DOI PMC

Adeyinka A., Kondamudi N. StatPearls [Internet] StatPearls Publishing; Treasure Island, FL, USA: 2019. [(accessed on 9 September 2019)]. Cholinergic Crisis. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482433/

Lane R.M., Potkin S.G., Enz A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int. J. Neuropsychopharmacol. 2006;9:101–124. doi: 10.1017/S1461145705005833. PubMed DOI

WHO. [(accessed on 9 September 2019)];2019 Available online: https://www.who.int/news-room/feature-stories/detail/treating-diabetes-takes-more-than-insulin-senegal-mobile-phone-project-promoting-public-health.

Akata I., Zengin G., Picot C.M.N., Mahomoodally M.F. Enzyme inhibitory and antioxidant properties of six mushroom species from the Agaricaceae family. S. Afr. J. Bot. 2019;120:95–99. doi: 10.1016/j.sajb.2018.01.008. DOI

Barros M.R., Menezes T.M., da Silva L.P., Pires D.S., Princival J.L., Seabra G., Neves J.L. Furan inhibitory activity against tyrosinase and impact on B16F10 cell toxicity. Int. J. Biol. Macromol. 2019;136:1034–1041. doi: 10.1016/j.ijbiomac.2019.06.120. PubMed DOI

Cseke L.J., Kirakosyan A., Kaufman P.B., Warber S., Duke J.A., Brielmann H.L. Natural Products from Plants. CRC Press; Boca Raton, FL, USA: 2016.

Gnanavel V., Roopan S.M., Rajeshkumar S. Aquaculture: An overview of chemical ecology of seaweeds (food species) in natural products. Aquaculture. 2019;507:1–6. doi: 10.1016/j.aquaculture.2019.04.004. DOI

Watson R.R. Polyphenols in Plants: Isolation, Purification and Extract Preparation. Academic Press; London, UK: 2018.

Rengasamy K.R.R., Sadeer N.B., Zengin G., Mahomoodally M.F., Cziáky Z., Jekő J., Diuzheva A., Abdallah H.H., Kim D.H. Biopharmaceutical potential, chemical profile and in silico study of the seagrass–Syringodium isoetifolium (Asch.) Dandy. S. Afr. J. Bot. 2019;127:167–175. doi: 10.1016/j.sajb.2019.08.043. DOI

Zengin G., Aktumsek A. Investigation of antioxidant potentials of solvent extracts from different anatomical parts of Asphodeline anatolica E. Tuzlaci: An endemic plant to Turkey. Afr. J. Tradit. Complement.Altern. Med. 2014;11:481–488. doi: 10.4314/ajtcam.v11i2.37. PubMed DOI PMC

Zengin G. A study on in vitro enzyme inhibitory properties of Asphodeline anatolica: New sources of natural inhibitors for public health problems. Ind. Crops Prod. 2016;83:39–43. doi: 10.1016/j.indcrop.2015.12.033. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...