Enzyme Immobilization on Maghemite Nanoparticles with Improved Catalytic Activity: An Electrochemical Study for Xanthine
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32290055
PubMed Central
PMC7179010
DOI
10.3390/ma13071776
PII: ma13071776
Knihovny.cz E-zdroje
- Klíčová slova
- catalytic properties, enzyme immobilization, metal nanoparticles, xanthine oxidases,
- Publikační typ
- časopisecké články MeSH
Generally, enzyme immobilization on nanoparticles leads to nano-conjugates presenting partially preserved, or even absent, biological properties. Notwithstanding, recent research demonstrated that the coupling to nanomaterials can improve the activity of immobilized enzymes. Herein, xanthine oxidase (XO) was immobilized by self-assembly on peculiar naked iron oxide nanoparticles (surface active maghemite nanoparticles, SAMNs). The catalytic activity of the nanostructured conjugate (SAMN@XO) was assessed by optical spectroscopy and compared to the parent enzyme. SAMN@XO revealed improved catalytic features with respect to the parent enzyme and was applied for the electrochemical studies of xanthine. The present example supports the nascent knowledge concerning protein conjugation to nanoparticle as a means for the modulation of biological activity.
Zobrazit více v PubMed
Rana S., Yeh Y.C., Rotello V.M. Engineering the nanoparticle-protein interface: Applications and possibilities. Curr. Opin. Chem. Biol. 2010;14:828–834. doi: 10.1016/j.cbpa.2010.10.001. PubMed DOI PMC
Misson M., Zhang H., Jin B. Nanobiocatalyst advancements and bioprocessing applications. J. R. Soc. Interface. 2015;12:20140891. doi: 10.1098/rsif.2014.0891. PubMed DOI PMC
Mahmoudi M., Bertrand N., Zope H., Farokzad O.C. Emerging understanding of the protein corona at the nano-bio interfaces. Nano Today. 2016;11:817–832. doi: 10.1016/j.nantod.2016.10.005. DOI
Mahmoudi M., Lynch I., Ejtehadi M.R., Monopoli M.P., BaldelliBombelli F., Laurent S. Protein−nanoparticle interactions: Opportunities and challenges. Chem. Rev. 2011;111:5610–5637. doi: 10.1021/cr100440g. PubMed DOI
Burda C., Chen X., Narayanan R., El-Sayed M.A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005;105:1025–1102. doi: 10.1021/cr030063a. PubMed DOI
Garcia J., Zhang Y., Taylor H., Cespedes O., Webb M.E., Zhou D. Multilayer enzyme-coupled magnetic nanoparticles as efficient, reusable biocatalysts and biosensors. Nanoscale. 2011;3:3721–3730. doi: 10.1039/c1nr10411j. PubMed DOI
Niemirowicz K., Markiewicz K.H., Wilczewska A.Z., Car H. Magnetic nanoparticles as new diagnostic tools in medicine. Adv. Med. Sci. 2012;57:196–207. doi: 10.2478/v10039-012-0031-9. PubMed DOI
Johnson B.J., Algar W.R., Malanoski A.P., Ancona M.G., Medintz I.L. Understanding enzymatic acceleration at nanoparticle interfaces: Approaches and challenges. Nano Today. 2014;9:102–131. doi: 10.1016/j.nantod.2014.02.005. DOI
Ding S., Cargill A.A., Medintz I.L., Claussen J.C. Increasing the activity of immobilized enzymes with nanoparticle conjugation. Curr. Opin. Biotechnol. 2015;34:242–250. doi: 10.1016/j.copbio.2015.04.005. PubMed DOI
Netto C.G.C.M., Toma H.E., Andrade L.H. Superparamagnetic nanoparticles as versatile carriers and supporting materials for enzymes. J. Mol. Catal. B Enzym. 2013;85–86:71–92. doi: 10.1016/j.molcatb.2012.08.010. DOI
Zhang H.L., Lai G.S., Han D.Y., Yu A.M. An amperometric hydrogen peroxide biosensor based on immobilization of horseradish peroxidase on an electrode modified with magnetic dextran microspheres. Anal. Bioanal. Chem. 2008;390:971–977. doi: 10.1007/s00216-007-1748-3. PubMed DOI
Magro M., Baratella D., Miotto G., Frömmel J., Šebela M., Kopečná M., Agostinelli E., Vianello F. Enzyme self-assembly on naked iron oxide nanoparticles for aminoaldehyde biosensing. Amino Acids. 2019;51:679–690. doi: 10.1007/s00726-019-02704-7. PubMed DOI
Magro M., Baratella D., Bonaiuto E., de Almeida Roger J., Vianello F. New Perspectives on Biomedical Applications of Iron Oxide Nanoparticles. Curr. Med. Chem. 2018;25:540–555. doi: 10.2174/0929867324666170616102922. PubMed DOI
Magro M., Sinigaglia G., Nodari L., Tucek J., Polakova K., Zdenĕk M., Cardillo S., Salviulo G., Russo U., Zboril R., et al. Charge binding of rhodamine derivative to OH- stabilized nanomaghemite: Universal nanocarrier for construction of magneto fluorescent biosensors. Acta Biomater. 2012;8:2068–2076. doi: 10.1016/j.actbio.2012.02.005. PubMed DOI
Pundir C.S., Devi R. Biosensing methods for xanthine determination: A review. Enzym. Microb. Technol. 2014;57:55–62. doi: 10.1016/j.enzmictec.2013.12.006. PubMed DOI
Shintani H. Determination of xanthine oxidase. Pharm. Anal. Acta S. 2013;7:004. doi: 10.4172/2153-2435.S7-004. DOI
Fersht A. Enzyme Structure and Mechanism. 1st ed. W.H. Freeman & Co.; New York, NY, USA: 1984.
Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–252. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Venerando R., Miotto G., Magro M., Dallan M., Baratella D., Bonaiuto E., Zboril R., Vianello F. Magnetic nanoparticles with covalently bound self-assembled protein corona for advanced biomedical applications. J. Phys. Chem. C. 2013;117:20320–20331. doi: 10.1021/jp4068137. DOI
Magro M., Faralli A., Baratella D., Bertipaglia I., Giannetti S., Salviulo G., Zboril R., Vianello F. Avidin functionalized maghemite nanoparticles and their application for recombinant human biotinyl-SERCA purification. Langmuir. 2012;28:15392–15401. doi: 10.1021/la303148u. PubMed DOI
Enroth C., Eger B.T., Okamoto K., Nishino T., Nishino T., Pai E.F. Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: Structure-based mechanism of conversion. Proc. Natl. Acad. Sci. USA. 2000;97:10723–10728. doi: 10.1073/pnas.97.20.10723. PubMed DOI PMC
Battelli M.G., Lorenzoni E., Stripe F. Milk xanthine oxidase type D (dehydrogenase) and type O (oxidase). Purification, interconversion and some properties. Biochem. J. 1973;131:191–198. doi: 10.1042/bj1310191. PubMed DOI PMC
Stein B.W., Kirk M.L. Electronic structure contributions to reactivity in xanthine oxidase family enzymes. J. Biol. Inorg. Chem. 2015;20:183–194. doi: 10.1007/s00775-014-1212-8. PubMed DOI PMC
Cerqueira N.M., Pakhira B., Sarkar S. Theoretical studies on mechanisms of some Mo enzymes. J. Biol. Inorg. Chem. 2015;20:323–335. doi: 10.1007/s00775-015-1237-7. PubMed DOI
Bielski B.H.J., Allen A.O. Mechanism of the disproportionation of superoxide radicals. J. Phys. Chem. 1977;81:1048–1050. doi: 10.1021/j100526a005. DOI
Johnson K.A. Role of induced fit in enzyme specificity: A molecular forward/reverse switch. J. Biol. Chem. 2008;283:26297–26301. doi: 10.1074/jbc.R800034200. PubMed DOI PMC
Chong A.S.M., Zhao X.S. Design of large-pore mesoporous materials for immobilization of penicillin G acylase biocatalyst. Catal. Today. 2004;93-95:293–299. doi: 10.1016/j.cattod.2004.06.064. DOI
Pan C., Hu B., Li W., Sun Y., Ye H., Zeng X. Novel and efficient method for immobilization and stabilization of β-D-galactosidase by covalent attachment onto magnetic Fe3O4–chitosan nanoparticles. J. Mol. Catal. B Enzym. 2009;61:208–215. doi: 10.1016/j.molcatb.2009.07.003. DOI
Lynch I., Dawson K.A. Protein-nanoparticle interactions. Nano Today. 2008;3:40–47. doi: 10.1016/S1748-0132(08)70014-8. DOI
Magro M., Zaccarin M., Miotto G., Da Dalt L., Baratella D., Fariselli P., Gabai G., Vianello F. Analysis of hard protein corona composition on selective iron oxide nanoparticles by MALDI-TOF mass spectrometry: Identification and amplification of a hidden mastitis biomarker in milk proteome. Anal. Bioanal. Chem. 2018;410:2949–2959. doi: 10.1007/s00216-018-0976-z. PubMed DOI
Miller J.N., Miller J.C. Statistics and Chemometrics for Analytical Chemistry. 6th ed. Pearson/Prentice Hall; Harlow, UK: 2010.
Nakatani H.S., Santos L.V.D., Pelegrine C.P., Gomes M., Matsushita M., Souza N.E.D., Visentainer J.V. Biosensor based on xanthine oxidase for monitoring hypoxanthine in fish meat. Am. J. Biochem. Biotechnol. 2005;1:85–89. doi: 10.3844/ajbbsp.2005.85.89. DOI
Cubukcu M., Timur S., Anik U. Examination of performance of glassy carbon paste electrode modified with gold nanoparticle and xanthine oxidase for xanthine and hypoxanthine detection. Talanta. 2007;74:434–439. doi: 10.1016/j.talanta.2007.07.039. PubMed DOI
Devi R., Thakur M., Pundir C.S. Construction and application of an amperometric xanthine biosensor based on zinc oxide nanoparticles–polypyrrole composite film. Biosens. Bioelectron. 2011;26:3420–3423. doi: 10.1016/j.bios.2011.01.014. PubMed DOI
Anik U., Çevik S. Double-walled carbon nanotube based carbon pastel electrode as xanthine biosensor. Microchim. Acta. 2009;166:209–221. doi: 10.1007/s00604-009-0190-y. DOI
Dervisevic M., Dervisevic E., Azak H., Çevik E., Şenel M., Yildiz H.B. Novel amperometric xanthine biosensor based on xanthine oxidase immobilized on electrochemically polymerized 10-[4H-dithieno(3,2-b:2′,3′-d) pyrrole-4-yl]decane-1-amine film. Sens. Actuators B Chem. 2016;225:181–187. doi: 10.1016/j.snb.2015.11.043. DOI
Dalkiran B., Erden P.E., Kiliç E. Amperometric biosensors based on carboxylated multi-walled carbon nanotubes-metal oxide nanoparticles-7,7,8,8-tetracyanoquinodimethane composite for the determination of xanthine. Talanta. 2017;167:286–295. doi: 10.1016/j.talanta.2017.02.021. PubMed DOI
Pei J., Li X.Y. Xanthine and hypoxanthine sensors based on xanthine oxidase immobilized on a CuPtCl6 chemically modified electrode and liquid chromatography electrochemical detection. Anal. Chem. Acta. 2000;414:205–213. doi: 10.1016/S0003-2670(00)00775-3. DOI