Iron Oxide and Iron Sulfide Films Prepared for Dye-Sensitized Solar Cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-00579S
Grantová Agentura České Republiky
1188218
Charles University Grant Agency
PubMed
32290401
PubMed Central
PMC7215878
DOI
10.3390/ma13081797
PII: ma13081797
Knihovny.cz E-zdroje
- Klíčová slova
- absorption spectroscopy, dye-sensitized solar cell, hollow cathode plasma jet, iron oxide, iron sulfide,
- Publikační typ
- časopisecké články MeSH
In this paper, the prospects of iron oxide films and their sulfidation for dye-sensitized solar cells (DSSC) are reviewed. Iron oxide thin films were prepared by hollow cathode plasma jet (HCPJ) sputtering, with an admixture of oxygen in the argon working gas and with an iron nozzle as the sputtering target. The discharge was powered by a constant current source in continuous mode and by a constant voltage source in pulsed mode. Plasma composition was measured by an energy-resolved mass spectrometer. Moreover, secondary electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), absorption and Raman spectra of the films are presented. Strong correlation between the color of the iron oxide film and its phase composition was revealed. Iron oxide films were sulfided at 350 °C. A relatively clean pyrite phase was obtained from the magnetite, while the marcasite with admixture of the pyrite phase was obtained from the hematite. Low influence of sulfidation on the films' microstructure was demonstrated.
Faculty of Mathematics and Physics Charles University 121 16 Prague 2 Czech Republic
Institute of Physics of the Czech Academy of Sciences 182 21 Prague 8 Czech Republic
Zobrazit více v PubMed
Wang D.-Y., Li C.-H., Li S.-S., Kuo T.-R., Tsai C.-M., Chen T.-R., Wang Y.-C., Chen C.-W., Chen C.-C. Iron Pyrite/Titanium Dioxide Photoanode for Extended Near Infrared Light Harvesting in a Photoelectrochemical Cell. Sci. Rep. 2016;6:20397. doi: 10.1038/srep20397. PubMed DOI PMC
Shukla S., Loc N.H., Boix P.P., Koh T.M., Prabhakar R.R., Mulmudi H.K., Zhang J., Chen S., Ng C.F., Huan C.H.A., et al. Iron pyrite thin film counter electrodes for dye-sensitized solar cells: High efficiency for iodine and cobalt redox electrolyte cells. ACS Nano. 2014;8:10597–10605. doi: 10.1021/nn5040982. PubMed DOI
Xia C., Jia Y., Tao M., Zhang Q. Tuning the band gap of hematite α-Fe2O3 by sulfur doping. Phys. Lett. Sect. A Gen. At. Solid State Phys. 2013;377:1943–1947. doi: 10.1016/j.physleta.2013.05.026. DOI
Shi X., Tian A., Xue X., Yang H., Xu Q. Synthesis of FeS2 (pyrite) nanotube through sulfuration of Fe2O3 nanotube. Mater. Lett. 2014;2:1–4. doi: 10.1016/j.matlet.2014.11.084. DOI
Botchway E.A., Ampong F.K., Nkrumah I., Boakye F.K., Nkum R.K. Growth of a Pure and Single Phase Iron Sulfide (Pyrite) Thin Film by Electrochemical Deposition for Photovoltaic Applications. Open J. Appl. Sci. 2019;09:725–735. doi: 10.4236/ojapps.2019.99059. DOI
Ennaoui A., Fiechter S., Pettenkofer C., Alonsovante N., Buker K., Bronold M., Hopfner C., Tributsch H. Iron Disulfide for Solar-Energy Conversion. Sol. Energy Mater. Sol. Cells. 1993;29:289–370. doi: 10.1016/0927-0248(93)90095-K. DOI
von Goldbeck O.K. IRON—Binary Phase Diagrams. Volume 46. Springer; Berlin/Heidelberg, Germany: 1982.
Kment S., Kmentova H., Sarkar A., Soukup R.J., Ianno N.J., Sekora D., Olejnicek J., Ksirova P., Krysa J., Remes Z., et al. Epoxy catalyzed sol-gel method for pinhole-free pyrite FeS2 thin films. J. Alloys Compd. 2014;607:169–176. doi: 10.1016/j.jallcom.2014.04.060. DOI
Hubička Z., Kment Š., Olejníček J., Čada M., Kubart T., Brunclíková M., Kšírová P., Adámek P., Remeš Z. Deposition of hematite Fe2O3 thin film by DC pulsed magnetron and DC pulsed hollow cathode sputtering system. Thin Solid Films. 2013;549:184–191. doi: 10.1016/j.tsf.2013.09.031. DOI
Kolobov V.I., Tsendin L.D. Analytic model of the hollow cathode effect. Plasma Sources Sci. Technol. 1995;4:551–560. doi: 10.1088/0963-0252/4/4/006. DOI
Kudrna P., Klusoň J., Leshkov S., Chichina M., Picková I., Hubička Z., Tichý M. A study of plasma parameters in hollow cathode plasma jet in pulse regime. Contrib. to Plasma Phys. 2010;50:886–891. doi: 10.1002/ctpp.201010150. DOI
Pedersen H., Larsson P., Aijaz A., Jensen J., Lundin D. A novel high-power pulse PECVD method. Surf. Coat. Technol. 2012;206:4562–4566. doi: 10.1016/j.surfcoat.2012.05.007. DOI
Leshkov S., Kudrna P., Chichina M., Klusoň J., Picková I., Virostko P., Hubička Z., Tichý M. Spatial Distribution of Plasma Parameters in DC-Energized Hollow Cathode Plasma Jet. Contrib. Plasma Phys. 2010;50:878–885. doi: 10.1002/ctpp.201010149. DOI
Cornell R.M., Schwertmann U. The Iron Oxides. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2004. Introduction to the Iron Oxides; pp. 1–7.
Schena T., Bihlmayer G., Blügel S. First-Principles Studies of FeS2 using many-body perturbation theory in the G0W0 Approximation. Phys. Rev B. 2013;88:235203. doi: 10.1103/PhysRevB.88.235203. DOI
The RRUFF Project. [(accessed on 1 March 2020)]; Available online: http://rruff.info/index.htm.